Limited Warranty Information

I. CUSTOMER OBLIGATION

A. CUSTOMER assumes full responsibility that this computer hardware, (the "Equipment")
and/or software (the "Software") meets the specifications, capacity, capabilities, versatility,
and other requirements of CUSTOMER. .

B. CUSTOMER assumes full responsibility for the condition 'and effectiveness of the
operating environment in which the Equipment and Software is to function, and for its
installation.

II. RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales
ticket, RADIO SHACK warrants to the original CUSTOMER that the Equipment and the cassettes
and/or diskettes containing software programs are free from defects. This warranty is only
applicable to purchases from RADIO SHACK company-owned Computer Centers, retail stores and
through RADIO SHACK franchisees and dealers. The warranty is void if the unit's case or
cabinet has been opened, or if the unit has been subjected to improper or abnormal use. If a
defect occurs during the warranty period, the defective Equipment must be returned to a Radio
Shack Computer Center, a Radio Shack retail store, participating franchisee or dealer for
repair, along with a copy of the sales ticket or lease agreement., The original CUSTOMER'S sole
and exclusive remedy in the event of a defect is limited to the correction of the defect by
repair, replacement, or complete refund, at RADIO SHACK'S election and sole expense. RADIO
SHACK has no obligation to replace or repair expendable items.

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability
for use of the Equipment or Software. Software is licensed on an “AS IS"™ basis, without
warranty. CUSTOMER'S exclusive remedy, in the event of a software defect is its repair or
replacement within thirty (30) calendar days of the date of purchase upon its return to a Radio
Shack Computer Center, Radio Shack retail store, participating franchisee or dealer along with
the sales ticket.

c. Except as provided herein no employee, agent, franchisee dealer or other person is
authorized to give any warranties of any nature on behalf of RADIO SHACK.

D. Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

F. Some states do not allow limitations on how long an implied warranty lasts, so the
above limitation(s) may not apply to CUSTOMER.

III. LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO
CUSTOMER OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR
ALLEGED BE CAUSED DIRECTLY OR INDIRECTLY BY "EQUIPMENT" OR "SOFTWARE" SOLD, LEASED, LICENSED OR
FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF SERVICE, LOSS OF
BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR OPERATION
OF THE "EQUIPMENT" OR "SOFTWARE." 1IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS,
OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY
OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, USE OR ANTICIPATED USE OF
THE "EQUIPMENT" OR SOFTWARE".

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER
FOR DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE
PARTICULAR "EQUIPMENT" OR "SOFTWARE" INVOLVED.

B. RADIO SHACK shall not be liable for any damages caused by delay in delivering or
furnishing any Equipment or Software.

C. No action arising our of any claimed breach of this WARRANTY or transactions under
this WARRANTY may be brought more than two (2) years after the cause of action has accrued or
more than four (4) years after the date of the Radio Shack sales ticket for the Equipment or
Software whichever first occurs.

D. Some states do not allow the exclusion or limitation of incidental or consequential
damages, so the above limitation(s) or exclusion(s) may not apply to CUSTOMER.

IV. RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER A non-exclusive, paid-up license to use the RADIO SHACK
application or system Software and/or the RADIO SHACK system Software (including firmware)
installed in or provided with the Equipment on one computer, subject to the following
provisions:

A, Except as otherwise provided in this Software License, applicable copyright laws
shall apply to the Software.

B. Title to the medium on which the Software is recorded (cassette and/or diskette) or
stored (ROM) is transferred to CUSTOMER, but not title to the Software.

c. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for
use on one computer and as is specifically provided in this Software License.

D. CUSTOMER is permitted to make additional copies of the Software only for backup or
archival purposes or if additional copies are required in the operation of one computer with
the Software, but only to the extent the Software allows a backup copy to be made.

E. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER
has purchased one copy of the Software for each one sold or distributed. The provisions of
this Software License shall also be applicable to third parties receiving copies of the
Software from CUSTOMER.

F. All copyright notices shall be retained on all copies of the Software.

V. APPLICABILITY OF WARRANTY

A. The terms and conditions of this WARRANTY are applicable between RADIO SHACK and
CUSTOMER to either a sale of the Equipment and/or Software License to CUSTOMER or to a
transaction whereby RADIO SHACK sells or conveys such Equipment and/or Software to a third
party for lease to CUSTOMER.

B. The limitations of 1liability and warranty provisions herein shall insure to the
benefit of RADIO SHACK, the owner and/or licensor of RADIO SHACK Software to RADIO SHACK, and
any author or manufacturer of computer hardware or Equipment sold or Software licensed by RADIO
SHACK.

VII. STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the
original CUSTOMER may have other rights which vary from state to state.

ASSEMBLER-16

PROGRAMMING PACKAGE

TRSDOS™ -II Operating System: Copyright 1982 Tandy Corporation. All

Rights Reserved.

TRSDOS"™™16 Operating System: Copyright 1982 Ryan-McFarland Corporation.
All Rights Reserved. Licensed to Tandy Corporation.

EDITL6 Software: Copyright 1982 Ryan-McFarland Corporation. All Rights
Reserved. Licensed to Tandy Corporation.

ASM16 Software: Copyright 1982 Ryan-McFarland Corporation. All Rights
Reserved. Licensed to Tandy Corporation.

LINK16 Software: Copyright 1982 Ryan-McFarland Corporation. All Rights
Reserved. Licensed to Tandy Corporation.

TRS—8¢® Assembler-16 Programming = Package: Copyright 1982 Tandy
Corporation., All Rights Reserved.

Reproduction or use without express written permission from Tandy Corporation,
of any portion of this manual is prohibited. While reasonable efforts have
been taken in the preparation of this manual to assure its accuracy, Tandy
Corporation assumes no liability resulting from any errors or omissions in this
manual, or from the use of the information obtained herein.

.

ASSEMBLER-16 INTRODUCTION

TRS-80 °

TO OUR CUSTOMERS...

The Assembler-16 Programming Package contains three systems
for developing programs in MC68#@@ object code:

The EDITOR (EDIT16) which allows you to create
and edit "source" assembly language programs

The ASSEMBLER-16 (ASM16) which assembles
the source program into an intermediate 68ggQ
object code program.
The LINKER (LINK16) which links the intermediate
object code program into an absolute executable
program file.

Also, as part of the TRSDOS-16, you can use:

The DEBUGGER (DEBUG) for debugging the
absolute program.

Radie fhaek

ASSEMBLER-16 INTRODUCTION

TRS-80 °

ABOUT THIS MANUAL
This manual contains two sections:

Section 1/ Operations explains how to use the
four systems.

Section 2/ Assembler-16 ‘Reference Guide references
the assembly language required by the Assembler-16.

The terms and notations the manual uses are:

ALL CAPS
indicates what will appear on your screen or what you
should type.

<KEYBOARD CHARACTER>
indicates keys you press.

lowercase underlined
represents words, characters, or values to be supplied by
you or the system.

filespec
is a standard TRSDOS-16 file specification, described in

the TRSDOS-16 Manual, having the general form:
filename/ext.password:drive(disk name)

The notations and terms accepted by the Assembler-l16 are in
the beginning of Section 2.

Radio fhaek

P

ASSEMBLER-16

INTRODUCTION

TRS-80 °

Chapter
Chapter
Chapter
Chapter
Chapter

Chapter
Chapter
Chapter
Chapter
Chapter

APPENDICES

Appendix
Appendix
Appendix
Appendix
Appendix

TABLE OF CONTENTS

Section 1/ OPERATION OF THE ASSEMBLER-16

l/ sample Session........ st eeeen ces e ..11
2/ The Editor (EDIT16)....cev.... cecaseas 15
3/ The Assembler-16 (ASMLI6).....eeeunnn.. 47
4/ The Linker (LINK16)...veeeeeeunnon. «..59
5/ The Debugger (DEBUG)......... ceseeeaeasl3

Section 2/ ASSEMBLER-16 REFERENCE GUIDE

6/ 680@P Organization.........o.... ceeeeead3
7/ The Assembler-16 Program......... seee.119
8/ Instructions........... Ceeaestrceeeenn 127
9/ DireCtiveS..iiiiieeeeeeeeneenneneeeena279
18/ Priveleged Instructions......... eeee.383
A/ Linker Output Format............. «e...319
B/ Memory Map..... ceecreeanrseens creeeeeel327
C/ Sample PrOgramS.....ceeeeeeenneess. ...328
D/ The Configurator Command Flle336
E/ Additional 68#@g@ Instructions........342

Radio fhaek

4 "

ASSEMBLER-16 SAMPLE SESSION
TRS-80 °

CHAPTER 1

SAMPLE SESSION

Radio fhaek

N

N

SAMPLE SESSION

ASSEMBLER-16 TRS-80 ®

CHAPTER 1/ SAMPLE SESSION

This chapter shows how to use the Assembler-16 Programming
Package to create, debug, and execute a 68g@g@ object
program,

This is for demonstration purposes only. For complete

information on each system's commands, listings, and error
messages, see the appropriate chapter.

DEVELOPING A 68g@@ PROGRAM
To develop a 68P@F program file, follow these steps:

1. Create one or more source program files
(with the Editor)

2. Assemble the source files into intermediate
object files (with the Assembler)

3. Create a linker controi file (with the Editor)
4, Using the control file, link the intermediate
files into an absolute program file (with the
Linker)
1. Creating a Source File
To create the source file, type:
EDIT16 <ENTER>
which loads the Editor. At the C? prompt type:
IN <ENTER>

which enters the insert mode. At the I? prompt, insert this
program:

BEGIN LDA .Af,SVC BLOCK *load svc block
MOVW QAQ,#8 *store vdchar svc
MOVW 6@AQ, #65 *store 'A
BRK 3] *execute vdchar
®
Radie fhaek

11

ASSEMBLER-16

SAMPLE SESSION

TRS-80 °
LDA .Af,SVC BLOCK
MOVW QAgd, #264
BRK 4
SVC BLOCK
RDATAB 32,08
END BEGIN

*load svc block
*store jp2dos svc
*execute jp2dos svc

*reserve svc block

Use <ENTER> to enter each line; <TAB> to tab between
columns. (The Editor displays the <TAB> as an + character

rather than tabbing.)

This assembly language program contains Assembler-16
instructions, described in Section II, and TRSDOS-16
SVCs, described in the TRSDOS-16 Operating System Manual.

If you need to edit the program, see Chapter 2.

Otherwise, save it and exit the Editor with:

! <ENTER>
SAVE SAMPLE/SRC <ENTER>
QUIT <ENTER>

You should now have a source disk file named SAMPLE/SRC.
Note: After using an SVC, you should normally
check offsets 2 and 3 for an error code. For
simplicity, this program does not do this.
2. Assembling an Intermediate File
To assemble SAMPLE/SRC, type:
ASM16 SAMPLE <ENTER>
which causes the Assembler to load and then assemble
SAMPLE/SRC into "intermediate", relocatable object code.

It then saves the intermediate code on disk as a file
named SAMPLE/OBJ.

3. Creating a Control File

To create a linker control file, load the Editor and
insert this program:

INCLUDE SAMPLE

Radio fhaek

12

ASSEMBLER-16 SAMPLE SESSION

TRS-80 °

END

INCLUDE and END are directives controlling the Linker
(discussed in Chapter 4).

SAVE this program as a file named SAMPLE/CTL and exit the
Editor.

4. Linking an Absolute Program File

To link the program file, type (at TRSDOS-16 Ready):
LINK16 SAMPLE <ENTER>

which loads the Linker and then loads SAMPLE/CTL.

The Linker links the one file which SAMPLE/CTL directs it

to INCLUDE -- SAMPLE/OBJ -~ to absolute addresses

beginning with address @@@@. (You could INCLUDE other

intermediate files, as well.)

The Linker saves this as an executable program file named
SAMPLE.

Refer to Chapter 4 for a complete listing of all the
options to the linker command.

EXECUTING THE PROGRAM

Since SAMPLE is an absolute, executable program file, you
can execute it from the TRSDOS-16 Ready mode. At
TRSDOS~16 Ready, type:

SAMPLE <ENTER>

TRSD0OS-16 loads and executes SAMPLE beginning at the
"relative" address of gggd.

Note that address @@@g@ is relative. TRSDOS-16 loads
itself and the Debugger, if present, in an area of memory
that is "invisible" to the user. The relative address of
g0@@ is actually the first address available after
TRSDOS-~16 and the Debugger.

Radio fhaek

13

ASSEMBLER-16 SAMPLE SESSION

TRS-80 °

Because TRSDOS-16 uses relative addresses, you need not
be concerned about loading your program over system
memory.

DEBUGGING THE PROGRAM

If you need to debug the program, you can use the
Debugger. At TRSDOS-16 Ready, type:

DEBUG ON <ENTER>
SAMPLE <ENTER>

which turns on the Debugger and then loads SAMPLE. If
the Debugger does not activate, you will need to
configure it into system memory. Appendix D explains
how.

Once SAMPLE is loaded into the Debugger, you can use any

of the Debugger commands. For example:
N <ENTER>

executes the SAMPLE's first instruction.
V 1A <ENTER>

displays the contents of addresses @@lA through @gg29.

To exit the Debugger and return to TRSDOS-16 Ready, type:

O <ENTER>

Radio fhaek

14

N

ASSEMBLER-16 THE EDITOR

TRS-80 °

CHAPTER 2

THE EDITOR

Radio fhaek

15

TN

ASSEMBLER-16 THE EDITOR

TRS-80 ¢

CHAPTER 1/ THE EDITOR

The Editor is a set of commands that allows you to create
and edit text files.

You can use the Editor with:
1. The Assembler-16
2. The COBOL Compiler
3. The TRSDOS-16 DO command and Configuration command
file
It allows you to:

1. Create files.

You can write your own programs and save them to disk for
future use.

2, Edit existing files.
You can change the program lines or contents of a file.
3. Combine files.

You can combine multiple programs together into one program.

LOADING THE EDITOR
This command, typed at TRSDOS-16 Ready, loads the Editor:

EDIT16 source filespec {options}

source filespec is optional. It causes the Editor to
CONCATenate the specified source filespec.

The options are:

W=drive tells the Editor which drive to use as its
work file.
M=drive tells the Editor which drive to use as a

"scratch file" during a MOVE.

Radio fhaek

17

ASSEMBLER-16 THE EDITOR

TRS-80 °

WORK AND SCRATCH FILES

W=drive

As the Editor creates or edits a program, it does not use
its own memory to do so. It stores your program on disk in
a temporary "work file". You must have enough space on disk

for this file, otherwise you get a disk-full error.

The W=drive option tells the Editor which diskette to use
for the work file. 1In this way you can save your good
diskettes from excessive writes and deletions.

1f drive is not a valid drive specification, EDIT16 will
not load and you will be returned to TRSDOS-16 Ready.

=drive

When you use the Editor's MOVE command, the Editor creates
another temporary disk file called a "scratch file".

The M=drive option tells the Editor which diskette to use
as its "scratch file". Again, this will save wear and tear
on your good diskettes and files.

1f drive is not a valid drive specification, the Editor
will use the first available drive for the scratch file.

SAMPLE SESSION

To enter the Editor, type:
EDIT16 <ENTER>

and the Editor displays the prompt:

This is the Editor's Command mode. You can use any of the
Editor's commands in this mode.

To create a program in the Editor, you must get in the
Insert mode. At the C? prompt, type:

IN <ENTER>

Radio fhaek

18

ASSEMBLER-16 THE EDITOR

TRS-80°

The Editor displays the I? prompt -- indicating the Insert
mode. Type in the following program lines. The asterisk
(*) indicates comment lines:

* THIS IS A PROGRAM <ENTER>

* THAT WILL DEMONSTRATE <ENTER>
* ALL OF THE TRSDOS~16 <ENTER>
* EDITOR'S COMMANDS <ENTER>
<ENTER>

When you press <ENTER>, the Editor exits the Insert mode.
The Editor keeps this file in its work file until you delete
the lines, SAVE the file, or exit the Editor.

To see what you've just entered in the Editor's work file,
type:

LIST ALL <ENTER>
and the Editor returns a complete program listing:
THIS IS A PROGRAM
THAT WILL DEMONSTRATE

ALL OF THE TRSDO0S-16
EDITOR'S COMMANDS

* % ¥ *

Notice there are no line numbers in this program. To give
it line numbers, you must first save your program by typing:

SA SAMPLE1/PRO <ENTER>
This writes the program as SAMPLEl/PRO to disk.

After saving the program, delete all information from the
Editor's work file by typing:

DE ALL <ENTER>

(The Editor prompts you with CANCEL = 'X'; type <ENTER> to continue
the DElete command. See DELETE for details.)

Next type:

CO SAMPLE1l/PRO <ENTER>

Radio fhaek

19

ASSEMBLER-16 THE EDITOR

TRS-80 °
to load -- CONCATenate -— the program into the Editor's work
file. (See the appropriate Editor's command for details on

its use.)
Your program is now in the Editor's work file with numbers:

* THIS IS A PROGRAM

* THAT WILL DEMONSTRATE
* ALL OF THE TRSDOS-16
* EDITOR'S COMMANDS

> w -

An alternate way to load your program into the work file
(after you've SAVEd it) is to exit the Editor. Type:

QU <ENTER>

Then reload the Editor and the file at the same time by
typing:

EDIT16 SAMPLEl/PRO <ENTER>

LINE NUMBERING

The Editor provides for two types of line numbrs :
. relative line numbers
. absolute line numbers
Relative line numbers
When you initially create a program, the Editor does not
assign line numbers. You can reference these unnumbered

lines via relative line numbers.

Relative line numbers are:

$ the current line
$-n the current line minus n lines
$+n the current line plus n lines

For example, to refer to a line five lines before the
current line, use the relative line number $-5. To refer to
a line nine lines after the current line, use $+9.

Radie fhaek

2g

~~

ASSEMBLER-16 THE EDITOR

TRS-80 °

Absolute line numbers

An'absolute line number is the actual number which the
Editor gives a line when you first CONCATeénate the file into
a work file.

An "absolute line number" can be:

. a whole number, including zero (#)
. START
. END

Whenever the Editor concatenates a file into an empty work
file, it assigns each line a whole number beginning with 1.

Although the Editor never assigns a line f§, you can use it
to insert lines at the beginning of the program. The
commands CONCATenate, MOVE, and INSERT are the only ones
that recognize a reference to line 4.
START and END refer specifically to the first or last line
of the program.

REFERENCING PROGRAM LINES
The following commands allow you to specify one line or a

group of lines.

line

refers to a single line of the program. This single line

can be either an "absolute line number" or a "relative line
number".

Some examples of line as an absolute line number are:

START Refers to first line of program

23 Refers to line number 23

1958 Refers to line number 1858

END Refers to last line of program

2 Refers to the line preceding the first

line of the program
Some examples of line as a relative line number are:

$ Refers to the last line the work file

Radio fhaek

21

ASSEMBLER-16 THE EDITOR

TRS-80 °©
displayed -- the current line
s$-7 Refers to the line that is seven lines
before current line.
$+6 Refers to line that is six lines after

the current line.

lines
When you see lines in the command's syntax, you can enter:
. One line
to indicate a single line only.
. ALL lines
to indicate every line of the work file.
. A pair of lines
to indicate all lines between and including the pair of
lines. To separate the line pair, use a comma (,), period

(.), or hyphen (-).

When you specify a pair of lines, you cannot mix absolute
and relative line numbers. For example:

2-4 and $-2,$%
are valid pairs of lines to reference. Both 2 and 4 are
absolute line numbers. Both $-2 and $ are relative line
numbers.

$,2 and START-$

are not valid because $ and 2 and START and $ reference
both relative and absolute line numbers within one pair.

When specifying a pair of lines in a command, be sure to
put the earliest line in the program first. You can use the
pair $-6,$-4, but not $-4,5-6.

Some more examples of pairs of lines are:

START, 23 Refers to all lines from the first to
line 23.
971-1423 Refers to lines 971 through 1#23.
®@
Radio fhaek

22

ASSEMBLER-16

TRS-80 ® THE EDITOR

ALL

$_7 r$"‘2

146 ,END
$.$+43

START . END

Refers to the entire contents of the
work file.

Refers to the lines from the seventh
before the current line to the
second before the current line.
Refers to lines 146 to the end.
Refers to the lines from the current
line to the line three lines after the
current line.

Refers to the entire contents of the
work file.

SPECIFYING STRINGS

Three more terms to know when specifying a string to search

for are:

delimiter

string

You can use the

CONCAT
LIST
MOVE
PRINT

indicates a character used to mark the
beginning and end of distinct variables.

indicates a set of characters. These can be
any alphanumeric characters including
blanks.

indicates a Global search. When G is
specified, the Editor will search for each
occurrence of the specified string within
the given range. Without G, the Editor
stops at the first occurrence of string.

USING THE <BREAK> KEY
<BREAK> key in the Editor with these commands:
SAVE

SEARCH
STRING

When you press <BREAK> with any of these commands, the
Editor will display the last line of operation and will
return to the command mode -- C? prompt.

NOTE: Be careful when using <BREAK> with the SAVE and

STRING commands.

If you press <BREAK> while executing one

Radio fhaek

23

ASSEMBLER-16 THE EDITOR

TRS-80°

of these commands, part of the work file (with STRING) or
the disk file (with SAVE) will be altered.

ENTERING AN EDITOR COMMAND

The following pages list all the Editor's commands. You
may enter them by typing either:

. the entire command (SAVE FILE <ENTER>)
. the first two letters of the command (SA FILE
<ENTER)

Most commands allow you to specify an expression.

If the expression begins with an alpha-character (A through
%), you must leave at least one blank space between the
command and the expression (SA NEWFILE rather than
SANEWFILE).

If the expression begins with a number, you do not need to

type an intervening space (both IN 199 and IN1@@ are
correct).

Radio fhaek

24

ASSEMBLER-16 THE EDITOR

TRS-80°

CHANGE
CH line
allows you to change line.

line is optional; if omitted, the Editor displays the
current line for you to change.

Once you enter this command, the Editor displays the I?
prompt. To change the line, type the new line followed by
<ENTER>.

If you decide not to change the line, press <ENTER>.

Examples

With our sample program inserted, type (at the C? prompt):
CH 1 <ENTER>

and the Editor displays:

1 * THIS IS A PROGRAM
I?

Change line 1 by typing:
* THIS IS A NEW PROGRAM <ENTER>

The Editor then displays the new line 1 and returns to the
Editor's command mode.

Radie fhaek

25

ASSEMBLER-16 THE EDITOR

TRS-80 °

CONCAT

CO (line) filespec (lines)

inserts (CONCATenates) the contents of filespec into the
Editor.

line is optional and can only be used when the work file
already contains a program. It indicates where in the work
file to insert filespec. If omitted, filespec is

inserted at the current position.

lines is optional and tells the Editor to only CONCATenate
the specified lines from filespec. If omitted, the entire
file is inserted.

Both line and lines must be enclosed in parentheses ().

Examples

Before entering this example, delete everything in the work
file by typing:

DE ALL <ENTER>
To CONCATenate SAMPLEl/PRO into the work file, type:
CO SAMPLEl/PRO <ENTER>

The Editor loads the file SAMPLELl/PRO from disk, displaying
the last line with its new line number.

To see the entire listing of the file, type LI ALL <ENTER>
and the Editor displays:

THIS IS A PROGRAM
THAT WILL DEMONSTRATE
ALL OF THE TRSDOS-16
EDITOR'S COMMANDS

=W o

* % Kk *

To CONCAT lines into a program already in the work file,
type:

CO (2) SAMPLE1l/PRO (2-3) <ENTER>

The Editor inserts lines two and three of SAMPLE1l/PRO after
the second line of the current program in the Editor.

Radio fhaek

26

- N

ASSEMBLER-16 THE EDITOR

TRS-80 °

(After the Editor CONCATenates lines, it displays the last
of the lines being inserted.)

Type LI ALL <ENTER> to see all of the Editor's contents:

1 * THIS IS A PROGRAM

2 * THAT WILL DEMONSTRATE
* THAT WILL DEMONSTRATE
* ALL OF THE TRSDOS-16

3 * ALL OF THE TRSDOS-16

4 * EDITOR'S COMMANDS

When the Editor concatenates lines of a file into a program
already in a work file, it doesn't add line numbers to the
most recently CONCATenated lines,

Radio fhaek

27

ASSEMBLER-16 THE EDITOR

TRS-80 °

DELETE
DE lines
deletes lines.

If you do not specify lines, the Editor deletes the
current line.

1f you specify lines as ALL, the Editor prompts you with:
CANCEL = 'X'

Type X <ENTER> to cancel the DElete command. If you really
do want to delete all the lines, press <ENTER>.

Examples

With the Editor's current position at the END of the work
file, you can delete the two lines we inserted in the last
example by typing:

DE $-3,$-2 <ENTER>
The program will again be:
THIS IS A PROGRAM
THAT WILL DEMONSTRATE

ALL OF THE TRSDOS-16
EDITOR'S COMMANDS

* o F OF

S w N

To delete the entire program, type:
DE ALL <ENTER>

Before actually deleting the lines, the Editor prompts:
CANCEL = 'X!

Type X <ENTER> to cancel the DElete ALL command. (If you
really do want to delete all the lines, press <ENTER>).

Radio fhaek

28

ASSEMBLER-16 THE EDITOR

TRS-80 °

INSERT
IN line

enters the Insert mode, displays the I? prompt, and allows
you to insert lines after the referenced line.

To terminate the Insert mode, type ! <ENTER> or simply
<ENTER> at the beginning of an Insert line. The Editor will
display the last line that you inserted, followed by the
command mode prompt -- C?.

If you don't specify line, insertion begins after the
current line.

Examples

If you have the sample program entered in the Editor and
want to insert new lines after the fourth line, type:

IN 4 <ENTER>
The Editor displays:
4 * EDITOR'S COMMANDS
You are now in the Insert mode and can now insert lines
after line 4. Type:
BEGIN<TAB>LD<TAB>.Af, #TABLE<TAB>*load start of table <ENTER>
<TAB>BNE<KTAB>DONE<TAB>*if no match go to DONE <ENTER>
<ENTER>
When you press the <TAB> key in the Insert mode, you'll see
+ . This represents the <TAB> key. The tabstops are
preset to multiples of eight, i.e., tabstops at 8, 16, 24,
32, etc. (To set your own tabs, see the TAB command later

in this chapter.)

To see the tabbed inserted lines and the rest of the
program, at the C? prompt, type:

LTI ALL <ENTER>

and the Editor displays:

Radio fhaek

29

ASSEMBLER-16 THE EDITOR

TRS-80 ° ~
1 * THIS IS A PROGRAM
2 * THAT WILL DEMONSTRATE
3 * ALL OF THE TRSDOS-16
4 * EDITOR'S COMMANDS
BEGIN LD Af, #TABLE *]oad start of table
BNE DONE *if no match go to DONE

To insert lines at the beginning of a program, type:
INg <ENTER>

you'll see the I? prompt. You can now insert lines which
will precede the first line of the program. For example,

type:

* LET'S LOOK AT THE EDITOR <ENTER>
<ENTER>

This inserts * LET'S LOOK AT THE EDITOR as the first line of
the sample program.
To insert a line at the end of the program, type:
IN END <ENTER>
You can now add lines at the end of the program. Type:

<TAB>MOV<LTAB>.D2,.D@+<TAB>*otherwise move element number <ENTER>
<ENTER>

to enter one more line.
Save this new program by typing:

SAVE SAMPLE2/PRO <ENTER>

Radio fhaek

30

ASSEMBLER-16 THE EDITOR

TRS-80 ©

LIST
LI lines

displays lines and positions the Editor to the last line
listed.

lines is optional; if omitted, the Editor lists the
current line,

If you attempt to list more than 21 lines (more than the
screen can display at one time), the Editor displays the
first 21 lines and then returns the message:

CANCEL = 'X'
If you press <ENTER>, the display will continue. If you
type X <ENTER>, the Editor stops the LISTing and returns to
the command prompt.
Examples

LI ALL <ENTER>

returns a complete listing of the current program. In this
case, the Editor displays:

* LET'S LOOK AT THE EDITOR
1l * THIS IS A PROGRAM
2 * THAT WILL DEMONSTRATE
3 * ALL OF THE TRSDOS-16
4 * EDITOR'S COMMANDS
BEGIN LD .A@,#TABLE *load start of table
BNE DONE *if no match go to DONE
MOVE .D2,.D@ *otherwise move element number

To obtain a listing of the first unnumbered line at the
beginning of the program, type:

LIST START <ENTER>
and the Editor returns this listing:

* LET'S LOOK AT THE EDITOR

Radio fhaek

31

ASSEMBLER-16 THE EDITOR

TRS-80 °

MOVE
MO (lines) TO line
duplicates lines and places them after line.

lines is optional. 1If omitted, the Editor moves the
current line.

line is optional. If omitted, the Editor places lines
after the current line,

You must enclose lines with parentheses (). If you do
not, the Editor returns an error,

Note: Use the DELETE command (See DELETE) if you want the
MOVEd line(s) deleted from the original position in the
file.

Examples

MO (START)TO END

moves the first line of the program to the end of the
program.

MO (1-2)TOS

moves all lines between and including lines 1 and 2 to
follow the current line.

MO($-2)TO $

moves the line two places before the current line to follow
the current line.

MO TO 4
moves current line to follow line 4.
MO

moves current line to follow current line. (Has the effect
of repeating the current line).

Radie fhaek

32

P

ASSEMBLER-16 THE EDITOR

TRS-80°

Use the DElete command to get rid of any of the lines you
MOved that you don't want duplicated in your program. First
LI ALL lines, then type:

DE$-3,$ <ENTER>
DE$-3 <ENTER>
DES$-3 <ENTER>

This returns the program to the contents we will reference
in the remainder of this section.

Radie fhaek

33

ASSEMBLER-16 THE EDITOR

TRS-80°

POSITION

PO + n
PO - n

moves the Editor's current position plus (+) or minus (-)
n lines and then displays the new current line.

Typing PO is optional; if you simply type +n or -n, you
can position the Editor.

n is optional. If you specify it, n can be any whole
number. If n is greater than the number of lines in the
program, the Editor returns:

** TPEM NOT FOUND**
and moves the current position to the beginning or end of
the program (beginning if you specified minus (-), end if
you specified plus (+)).
If you do not specify n, the Editor uses 1.
Once you enter the POsition command, whenever you simply
press <ENTER>, the Editor will move one line forward or
backward, depending on the POsition command you originally
entered. To exit this command, enter another of the
Editor's commands.
Examples

Using the sample program, SAMPLE2/PRO, position the Editor
to the end by listing the entire program. Type:

LI ALL <ENTER>

and the Editor displays the current program:

* LET'S LOOK AT THE EDITOR
1l * THIS IS A PROGRAM
2 * THAT WILL DEMONSTRATE
3 % ALL OF THE TRSDOS~16
4 * EDITOR'S COMMANDS
BEGIN LD .Afg, #TABLE *load start of table
BNE DONE *if no match go to DONE
MOV .D2,.D@ *otherwise move element number
@
Radio fhaek

34

ASSEMBLER-16 THE EDITOR

TRS-80°

The Editor's position at this time is the last line of the
program. To position the Editor to line 2, type:

PO -5 <ENTER>
The Editor displays:

2 * THAT WILL DEMONSTRATE
O ceeeccscanns .o

To position the Editor to line number 1, type:
-~ <ENTER>
and the Editor now displays:

1 * THIS IS A PROGRAM

Radie fhaek

35

ASSEMBLER-16 THE EDITOR

TRS-80 °

PRINT
PR lines
prints lines on the printer.

lines is optional. 1If you omit lines, the Editor prints
only the current line.

If lines include absolute line numbers, the Editor prints
them also.

Before printing, PRINT moves the paper to the TOP OF FORM.

Examples
PR 2 <ENTER>

prints line 2 on the printer.
PR ALL <ENTER>

prints the entire listing on the printer.
PR <ENTER>

prints the current line on the printer.

Radie fhaek

36

ASSEMBLER-~16
TRS-80 © THE EDITOR

QUIT
QU
terminates the Editor and returns to TRSDOS-16.

If you attempt to QUit the Editor without SAVEing the
current work file, you'll see the prompt:

NO FILES SAVED
QUIT EDITOR? Y OR N

This warns you that you haven't saved the file you were
working on. If you don't want to SAVE it, type:

Y <ENTER>
The Editor then terminates and returns to TRSDOS-16 Ready.

If you do not want to exit the Editor without SAVEing your
program, type:

N <ENTER>
You will now see the last line, followed by the Editor's
command prompt.
Examples

QU <ENTER>

(if you have saved your file) terminates the Editor and
displays:

EDITOR TERMINATED

TRSDOS=16 REAAY ..ttt eeceeneeocsoosonnnssns ceeecesens

Radio fhaek

37

ASSEMBLER-16 THE EDITOR

TRS-80 °

RELABEL
RE lines

Sequentially reorders the local label numbers between two
global label definition lines. (See the Assembler Reference
Section for details on local and global labels.)

1f either of the lines you indicate does not contain a
global label definition, the Assembler will use the next
line which does contain one.

Wwhen the Editor alters lines, it displays all altered
lines followed by the last altered line. That is, it
repeats the last line.

Use this command only on source text that uses the local
label format.

Examples

Type in the example program using local and global labels.
(Be sure to first delete all lines currently in the Editor.)

$1<TAB>DATAL<TAB>1# <ENTER>
GLOBAL ONE <ENTER>
$7<TAB>BE<KTAB>$5 <ENTER>
$5<TAB>BLLKTAB>$7 <ENTER>
GLOBAL TWO <ENTER>
SP<TAB>NOP <ENTER>
<TAB>LDA<TAB>.Af,$1l <ENTER>
GLOBAL THREE <ENTER>

! <ENTER>

(After typing in this program, SAVE it, DElete ALL lines in
the work file, and then CONCATenate it to have the Editor
give it line numbers.) When you LIst it, the program now
appears as:

1 s1 DATAL 19

2 GLOBAL ONE

3 §7 BE $5

4 $5 BLT $7

5 GLOBAL TWO

6 s¢ NOP

7 LDA .AfQ,S1
8 GLOBAL THREE

Radio fhaek

38

e hN

~

ASSEMBLER-16

TRS-80°

THE EDITOR

The Editor would execute the following commands in these

ways:

RE1l,8 <ENTER>

causes the Editor to relabel all the local labels in the

above program.

(After executing each RElabel command, you'll have to first
DElete all the contents of the work file, then
re-CONCATenate the program to see the effect of each

RELABLE.

RE 2 <ENTER>

The Editor does not relabel any lines.

It returns **ITEM

NOT FOUND** followed by the line that you specified.

RE 1,2 <ENTER>

No relabeling occurs.

followed by the last
RE 1-3 <ENTER>

causes the Editor to
RE 2,5 <ENTER>

causes the Editor to
RE 2-6 <ENTER>

causes the Editor to
ranges.

RE 3.7 <ENTER>
causes the Editor to
RE ALL <ENTER>

causes the Editor to
program.

When you RELABEL all
181 DATAL
2 GLOBAIL ONE

The Editor returns
line you specified.

relabel GLOBAL ONE's

relabel GLOBAL ONE's

relabel GLOBAL ONE's

relabel GLOBAL TWO's

TITEM NOT FOUND

range only.

range only.

and GLOBAL TWO's

range only.

relabel each GLOBAL RANGE in the

of the program, it should be:
1

Radio fhaek

39

ASSEMBLER-16

S1
$2
GLOBAL
$1

GLOBAL

BE
BLT
TWO
NOP
LDA
THREE

TRS-80°

$2
$1

.Af,$1

Radio Shaek

49

THE EDITOR

ASSEMBLER-16 THE EDITOR
TRS-80 °
SAVE
SA (lines) filespec
saves filespec to disk.
lines is optional. If you omit it, the Editor saves all

of the current program.

If you do not specify filespec, the Editor saves the
program under the most recently CONCATenated or SAVEd
filespec. Before doing so, it displays the filename,
followed by "CANCEL = 'X'". To cancel the SAve, type X
<ENTER>; to continue the SAVE, press <ENTER>.

Examples

With the sample program -- SAMPLE2/PRO -- CONCATenated in
the work file, type:

SAVE SAMPLE2/PRO <ENTER>

The Editor SAVEs the program to disk, writing over any
existing file with the same name.

To SAVE only the first two lines of the program, type:
SA (1,2) SAMPLE2/PRO <ENTER>
If you type:
SA <ENTER>
the Editor prompts you with:
SAMPLEZ2/PRO
CANCEL = 'X'

If you want to discontinue the SAVE, type X <ENTER>; if you
want to continue the SAVE, press <ENTER>.

Radio fhaek

41

ASSEMBLER-16 THE EDITOR

TRS-80 ° —
SEARCH
SE (lines)delimiter string delimiterG
causes the Editor to search for string within the range of
lines.
lines is optional. If omitted, the Editor SEarches the
current line only. You must enclose lines in parentheses
().
G is optional. When used, it tells the Editor to list all
occurences of string within the range of lines. If not
included, the Editor lists only the first occurrence of
string.
Examples
CONCATenate SAMPLE2/PRO into the empty Editor (every line
has an absolute line number), and type:
SE (1-2)*LOOK* <ENTER>
—~
"*" js the delimiter. The Editor searches lines 1 and 2 for
the string LOOK. Since you didn't specify G, the Editor
displays only the first line containing LOOK.
SE (ALL)*BNE*G <ENTER>
The Editor searches all lines of the program for the string
BNE and displays every line containing it followed by the
current line. ~
N

Radio fhaek

42

ASSEMBLER-16 THE EDITOR

TRS-80 °

STRING

ST (lines)delimiter stringl delimiter string2 delimiter G

searches lines of the program for stringl and replaces
it with string2.

lines is optional; if omitted, the current line is used.
You must enclose lines with parentheses ().

G is optional. When used, it tells the Editor to substitute
stringl with string2 at every occurence of stringl within the
range of lines. If you don't specify G, the Editor substitutes
string2 for stringl at the first occurrence within the range of
lines.

stringl is optional. If you omit it, the Editor inserts
string2 at the beginning of every line within the range of
lines.

string2 is optional. If you omit it, the Editor deletes
stringl.

Examples

With SAMPLE2/PRO still CONCATenated in the Editor's work
file, type:

ST(1-4)/THIS/THAT/G <ENTER>

"/" is the delimiter. The Editor finds all occurrences (G
is specified) of the string THIS and substitutes each with
THAT.

By typing:

ST (ALL)/THAT/THIS/ <ENTER>
the Editor finds all occurrences of the string THAT and
replaces it with THIS, and stops at the first occurrence (no
G specified).

ST/E// <ENTER>

causes the Editor to search the current line for the string
E. Since the second string is empty, it deletes E.

Radio fhaek

43

ASSEMBLER-16 THE EDITOR

TRS-80°

TAB

TA c,tabstopl,tabstop2,....

allows you to set tabs for use in the Insert mode (I?
prompt).

¢ can be any character that you choose to represent the
tab. (except blank or $). If you don't specify c, the
Editor clears all tab stops.

tabstopl, tabstop2, are the positions where you set
the tabs stops. You can specify up to eight tab stops,
separating each with a comma. The first tab in a line is

tabstopl, the second tabstop2, etc.

If you specify only the tab character, the Editor keeps all
previous tab stops. 1In this way, you can change the tab
character without altering the actual tab stops. This is
especially useful when ¢ is a character used in the text

of an insert.

To set a tab (at the Editor's commmand mode -- C?), type TA

followed by the tab character, a comma, then a string of tab
stops (column number where you want to place tabs). You can
enter up to eight tabs.

You can also use the <TAB> key instead of the TABS command.
Its tabstops are preset to multiples of eight (i.e., 8, 16,
24, 32, etc.).

When you enter <TAB> in the Insert mode, it displays a +
character. 1In the Command mode, the Editor displays the
actual tabbed spacing.

Use the <TAB> key when you want the multiple of eight

tabstops; otherwise set your own tabstops with the TAB
command.

When setting tab stops:

1. If you don't specify any variables, tab stops are
cleared. For example, TA <ENTER> clears all tab stops.

2, If you specify only the tab character, the actual tab
stops remain the same.

Radie fhaek

44

ASSEMBLER-16 THE EDITOR
TRS-80 °
3. The tab character can be any character except blank, §,
or one included in the text.
4, Remember where you set the tab stops because, when you

use them in the Insert mode, the Editor does not
display the actual tab spacing.

5. Always set the maximum number of tabs that you'll
want to use. For example, if you only set three
tabs with the TA command, you can only reference three
in the Insert mode. If you reference more than you
set, the Editor deletes any information following the
extra tab(s).

You can use a tab character at any time in the Insert mode.
For example, set tabs at 1§, 20, and 35, with a slash (/) as
the tab character, by typing:

TA /,18,208,35 <ENTER>
Now you can use tabs in any lines you type in the Insert
mode. To do so, simply type the slash (/) before the word
or phrase you want tabbed. You can use as many tabs as you
set with the TAb command. Type:

BEGIN/LD/.Af,#TABLE/*1load start of table <ENTER>

Now the program line is set with tabs. Whenever the Editor
displays this line, it does so with the contents of the line
tabbed like this:

BEGIN LD .Af, #TABLE *load start of table

Examples:
TA/,5,12,30 <ENTER>

Sets tabs at columns 5, 12, and 3@. The tab character is
the / (slash).

TA ? <ENTER>

Changes the tab character to ? (question mark) and keeps all
previous tab stops (5,12, and 3f) the same.

Radio fhaek

45

ASSEMBLER~16 THE EDITOR
TRS-80 °
TA <ENTER>
Clears all tabs.
®
Radio fhaek

46

ASSEMBLER-16 THE ASSEMBLER-16
TRS-80 °

CHAPTER 3

THE ASSEMBLER-16

Radio fhaek

47

ASSEMBLER-16 THE ASSEMBLER-16
TRS-80°

Radio Sfhaek

48

ASSEMBLER-16 T -
TRS-80 ° HE ASSEMBLER-16

CHAPTER 3/ THE ASSEMBLER-16

The Assembler-16 assembles a source file into an
intermediate, relocatable object code file.

This Chapter explains how to operate the assembler. For

information on the source format required by the Assembler,
see Section II,.

THE ASSEMBLER COMMAND

This command, typed at TRSDOS-16 Ready:

ASM16 source filespec {options} comment

loads the Assembler-16 and assembles the source filespec
using the default options or the options you specify.
(The options and default options are described below).

If you omit the source filespec's extension and include
the disk identifier (drive or disk name), the Assembler-16
uses the disk identifier instead of the extension.

If you omit the source filespec's extension and also omit
the disk identifier, the Assembler-16 uses /SRC as the
extension.

You can use a source file produced by other editors, as
well as the Assembler-16's Editor, provided it is in one of
these formats:

(1) variable length record (VLR) with one statement
per record preceded by a byte count (this is what
the Editor in this package produces)

(2) ASCII stream with one byte per record (an LRL of
one) and each line terminated by a carriage
return byte.

(3) fixed length record (FLR) with one statement per
record.

The optional comment allows you to document the assembly.
If you use the comment, you must enclose the options in
braces {}. Otherwise, the braces are not required.

Radie fhaek

49

ASSEMBLER-16

TRS-80 ® THE ASSEMBLER-16

ASSEMBLER OPTIONS

You can specify the one letter options in one of four ways:

option switches the option ON
option=Y switches the option ON
option=N switches the option OFF
option=drive switches the option ON using

the specified drive

You can separate each option with a comma, a space, or
nothing (not separate them at all).

The options and their defaults (what the Assembler-16 uses
if you omit the option) are:

C (Current Récord Count)

Displays the number of the record currently being assembled.
The default is C=N.

E (Errors Only)

Produces a listing of only the records which generate an
error, along with any any object produced, and the error
message. The default is E=N.

K (Keep Work Files)

Keeps the Assembler-16 from deleting the work files. (See
the W switch for an explanation of the work files.) This
speeds up multiple assemblies, since the Assembler-16 will
not have to create work files over and over again. The
default is K=N.

L (Listing File)
Creates a listing disk file using the same filename as the

source, with the extension /LST. The default is L=N.

O (Object File)

Radio fhaek

50

N

ASSEMBLER~16 THE ASSEMBLER-16
‘ TRS-80 °

Generates an object file using the same filename as the
source, with the extension /OBJ. The default is O=Y.

P (Print Listing)

Prints the listing on the printer. The default is P=N.

S (Short Listing)

Truncates listing if the source is too long for a line (as
opposed to wrapping-around). The default is S=N.

T (Terminal Listing)

Prints the listing on the video display terminal. The
default is T=Y.

U (Uppercase Conversion)

Converts lowercase letters to uppercase letters. This is
useful for printers without lowercase. The source remains
unchanged. The default is U=N.

W (Work File Specification)

Allows you to specify which drive the Assembler-16 should
use for its work files. The default is W=@. W=N is not
allowed.

To save memory, the Assembler-16 creates two work files
during the assembly for temporary storage. It names the
files:

ASMS@P@Pp/WRK
ASMPA@@p/WRK

(p is the partition number for multi-tasking environments.
Multi-tasking will be available in a future release of
TRSDOS-16. In a single-tasking environment, p=l.)

The Assembler-16 stores this file in your primary drive
(unless you use W=drive.) When it finishes the assembly,
it deletes the work files (unless you use K=N).

Radio fhaek

51

ASSEMBLER-16 THE ASSEMBLER-16
TRS-80 °

EXAMPLE ASSEMBLER COMMAND
This command, typed at TRSDOS-16 Ready:
ASM16 FRED {C=Y,L,P,U,W=4,K} <ENTER>

causes the Assembler-16 to assemble the source file named
FRED/SRC and:
. display a current record count on the screen (C=Y)
. generate a listing file named FRED/LST (L)
. generate an an object file named FRED/OBJ (the
default of 0 is O=Y)
. print the listing on the printer in all uppercase
(P,U)
. store the work files on drive 4 (W=4)
. retain (not delete) the work files (K)

THE ASSEMBLER LISTING

1. Side-by-Side Listing Format

The side-by-side listing starts on a new page. These are
two examples of it:

Example 1:

8234C FPEI2F 43F8 743 * LDA .Al, /MIT25 LABEL4
J6R4+

Example 2:

699 ggps586 227C LDL LAl #3
poPaEER3

The meaning of the examples is as follows:

Line 1

columns 1-4 contains the source file line number in
decimal notation (Example 1 is line 8234;
Example 2 is line 6#§)

column 5 tells whether the line is from the primary

source filespec or a file which was

Radie fhaek

52

ASSEMBLER-16

TRS-80 ® THE ASSEMBLER-16

~~
column 7-12
column 14-17
columns 19-22

s
column 23
column 24
column 26-end

FaiaN

copied into it. (See the COPY directive
in Chapter 9):
. a blank space indicates the line
is from the primary file (Example 2)
. the characters A-I indicate the line
was copied. (Example 1 indicates
the line was part of "C", the third
file copied into the program.)

contains the hexadecimal memory address

where the operation word is stored.
(Example 1 indicates the LDA instruction
is at H'E12F; Example 2

indicates LDL is at H'#586.)

contains the hexadecimal operation word.
(The lines immediately below it reflect the
extensions.) (Example 1 indicates the
operation word for LDA is 43F8; Example 2
indicates LDL is 227C)

tells where the symbol used in the line (if
any) was defined. (Example 1 indicates
MIT25 LABEL4 was defined in line 743.)

tells whether the symbol used in this line
is from the primary file or copied.
. a blank space indicates it was from
the primary file (Examples 1 and 2
both contain blank spaces in this
column)
. the letters A-I indicate the symbol
was from a copied file.

tells if the symbol used in the line is
a backwards reference (defined in a previous
line):
. an asterisk (*) indicates it is a
backwards reference
. a blank space indicates it is a
forwards reference
(Example 1 indicates MIT25 LABEL4 was
defined in a previous line.)

is the source line, printed with no reformatting.
If the source line is long, the excess is
printed right justified on the following line.

Radio fhaek

53

ASSEMBLER-16 THE ASSEMBLER-16
TRS-80 °

Line 2

columns 1@~17 is the extension of the operation word,
right justified (Example 1 indicates the
extension for the instruction is @6E4;
Example 2 indicates a long extension of

pO9aR0A3.)
column 18 is the relocation type of the symbol used in
the line (if any):
. a period (.) indicates it is external

(defined by DEF)
. a plus sign (+) indicates it is relocatable
(defined in an RSECT)
. a blank space indicates it is absolute
(defined in an ASECT)
(Example 1 indicates the symbol MIT25 LABEL4 is
relocatable; Example 2 does not contain a symbol)
See Chapter 9 for an explanation of the DEF,
RSECT, and ASECT directives.)

The Assembler-16 may print line 2 one to four times, depending on hgﬂ\
many extensions the operation word uses.
2. Error/Warning Messages

The error and warning listing begins immediately after the
side-by-side listing. These are examples of it:

Exampie 1:
2 gppees peegeeag 1 LOAD .D1, #32

*** ERROR ***] UNKNOWN OPCODE
% ERROR ***] ILLEGAL STATEMENT

Example 2:

3 ga9pg4 3g3cC LD .B1XYZ, #32
pgo2g

**%* ERROR **%* REGISTER SYMBOL REQUIRED BlXYZ
** WARNING ** WORD LENGTH ASSUMED

Example 3:

N

Radio fhaek

54

o

ASSEMBLER-16

TRS-80 ® THE ASSEMBLER-16

4 gppoes 323C LD .D1, #32

** WARNING **

8g29

WORD LENGTH ASSUMED

The meaning of each line is as follows:

Line 1

Line 2

Line 3

column 1-13

column 15-16

columns

18-end

is the line containing the error

indicates with a dollar sign ($) the position
of the errors or warnings. The Assembler-16
uses this notation only where it is helpful.

is the error message. Line 3 is repeated for
each error in the source line. This is the
meaning of each column in line 3:

tells the type of message:
*** ERROR *** (this causes the program not
to assemble properly)
** WARNING ** (this warns you that the
Assembler-16 might not be interpreting
your instruction as you want it to)

identifies which $§ character the error message

is referencing (Both messages in Example 1 indicate
that they are referencing the first -- actually

the only -~ $ character)

contains the error/warning message, followed by
a blank space, followed by the associated symbol
(if any). 1If the symbol is longer than space
permits, it is truncated.

List of Errors and Warnings

CONSTANT OUT OF RANGE

ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
MISSING

COPY FILE NOT FOUND

BINARY CONSTANT FORM FIELDS SIZE ERROR

COPY STATEMENT ILLEGAL ORG EXPRESSION

EXPRESSION INCORRECT NUMBER OF EXPRESSIONS
FORMAL INDEXING NOT ALLOWED

HEX CONSTANT INVALID LOCAL

LOCAL LOCAL LABEL NOT ALLOWED

OCTAL CONSTANT NESTED COPY NOT ALLOWED

STRING DELIMITER OPERAND INCOMPATIBLE WITH INSTRUCTION
SYMBOL REGISTER SYMBOL REQUIRED

COMMA STATEMENT IGNORED

Radie fhaek

55

ASSEMBLER-16 0° THE ASSEMBLER-16

TRS-8 —~
MISSING COMMENT SEPARATOR SYMBOL NOT POP
MISSING SEPARATOR TOO MANY COPY STATEMENTS
SYMBOL REQUIRED USE OF ILLEGAL FORM SYMBOL
UNKNOWN OP CODE VALUE NOT RELATIVE TO CURRENT PSECT
MISSING RIGHT PAREN VALUE OUT OF RANGE
MISSING STRING TERMINATOR VALUE TRUNCATED
PACKED STRING NOT ALLOWED BIT NUMBER OUT OF RANGE
GLOBAL SYMBOL REQUIRED SHIFT VALUE OUT OF RANGE
INVALID FORMAL REFERENCE SMALLER LENGTH ATTRIBUTE ASSUMED
INVALID GLOBAL SYMBOL WORD LENGTH ASSUMED
LOCAL MULTIPLY DEFINED DIVISION BY ZERO
LOCAL UNDEFINED ILLEGAL STATEMENT
SYMBOL MULTIPLY DEFINED REPEATED RLIST ELEMENT - IGNORED
SYMBOL UNDEFINED: INCORRECT NUMBER OF OPERANDS
ABSOLUTE EXPRESSION REQUIRED DSECT SYMBOL REQUIRED
ADDRESS REGISTER REQUIRED RSECT SYMBOL REQUIRED
3. Cross Reference Listing
The cross reference listing starts on a new page. This is an
example of it:
LABELSCANHAVESINGLESPACESBUTDONTSHOWTHEM poPdA382 L+ 39¢C ™

331 /MOV 336 /LD 337 /STP 338 /XCH-. _
34¢ /LDL 343 /ADD 344 /LD 356 /MOV
376 /STB

The meaning of it is as follows:

Line 1
columns 1-45 is the first 45 nonblank characters of the
symbol, with trailing blanks.
column 56 is the length attribute of the symbol:
L = Long
W = Word
B = Byte
U = Undefined
column 57 indicates where the symbol's relocation type:

blank space = absolute (defined in a program
section initialized by the ASECT directive)
+ = relocatable (defined in a program
section introduced by the RSECT directive)
. = external (declared by the DEF directive)
(If the program contains none of the above

Radio fhaek

56

»); .

ASSEMBLER-16 -
TRS-80 ° THE ASSEMBLER-16

directives, the Assembler-16 treats all the
symbols as absolute.)

columns 59-62 contains the source line number where the symbol
is defined (**** indicates the symbol's undefined.)

column 63 tells whether the symbol is from the primary
source filespec or a copied file:
blank space = primary file
A-I = copied file

Lines 2-n

columns 3@§-33 contains the source line number where
the symbol is referenced.

column 34 tells whether that line is from a primary
or copied file:
blank space = primary file
A-I = copied file

columns 35-4f contains the source line's instruction
preceded by a slash (/)

The Assembler-16 lists line 2 as many times as there are
references to the symbol. If there are no references, the
Assembler-16 does not list line 2. Columns 3¢-41 are repeated
across the entire width of the page.

4. Statistics Listing

The statistics listing is the final page of the listing. It
lists the total ERROR and WARNING messages (in decimal notation).

Example:

STATISTICS OF THIS ASSEMBLY

TOTAL NUMBER OF ERRORS 6
TOTAL NUMBER OF WARNINGS 8
@

Radio fhaek

57

\\

ASSEMBLER-16 THE LINKER
TRS-80 °

CHAPTER 4

THE LINKER

Radie fhaek

59


~~~




ASSEMBLER-16 TH
TRS'BD ® E LINKER

CHAPTER 4/ THE LINKER

The Linker (LINK16) links one or more "intermediate" files
into an absolute program that the 68f@@ can execute. It
does this in one pass.

In addition, the Linker can load multiple object files,
resolve undefined external references between the modules,
and produce a single program file.

PREPARING A LINKER CONTROL FILE

Before using the Linker, you must prepare a Linker control
file by:

l. Creating an object file, and then
2. Creating the control file

l. Creating an Object File

The object file is a file of intermediate, relocatable
object code. You will normally use the Assembler-16 to
create it.

You can also create it with another assembler or compiler
provided it produces the format required by the Linker.
Appendix A describes the format.

2. Creating the Control File

The control file is a file of linker directives. You will
normally use the Editor, as demonstrated in Chapter 1 to
create it.

You can also use other editors to create the file, provided
it is in the format required by the Linker:

(1) wvariable length record (VLR) with each record
preceded by a byte count (this is what the Editor
in this package produces.)

(2) ASCII stream with one byte per record (an LRL
of one) and each line terminated by a carriage
return byte.

Radie fhaek

61




ASSEMBLER-16 THE LINKER

TRS-80 °

(3) fixed length record (FLR) with one record per
statement.

The directives you can use in creating this file are:
END

END
ends the control file. If the Linker reaches the end of the
file and does not encounter an END directive, it
automatically supplies one.
Example:

END
tells the Linker to stop reading the control file, finish
producing the absolute program file, and return to
TRSD0OS-16 Ready.
INCLUDE

INCLUDE object filespec

inputs the object filespec and links it to the existing
program.

If you omit the object filespec's extension, the Linker
appends the extension /OBJ. However, if you omit the
extension and include the drive, the Linker treats the drive
as the extension.

Example:
INCLUDE FILEL

causes the Linker to load FILE1l/0OBJ and link it to the
current program.

INCLUDE FILE1l:2
causes the Linker to load FILE1l/:2 and link it to the

current program.

ORIGIN

Radio fhaek

62




ASSEMBLER-16 THE LINKER
TRS-80 °

ORIGIN address
forces the next INCLUDEd filespec to be loaded beginning at
the specified address. The Linker assumes this address
is decimal unless it has either a leading '0O' or '>', both
of which imply hexadecimal.
The Linker will not test for conflicts with previously
loaded code. For example, if you specify the same ORIGIN
address for two filespecs, the Linker will load one on top
of the other without giving you a warning.

If you omit ORIGIN, the Linker uses an originating address

of gogg.

Examples:
ORIGIN 500¢

tells the Linker to use decimal 5@@@ as the originating
address for the next INCLUDEd file.

ORIGIN >1400

tells the Linker to originate the next file at hexadecimal

1909.

*

Begins a comment line. The Linker will print it on the map,
but otherwise ignore it.

Example:
*This is a comment

is ignored by the Linker.

THE LINKER COMMAND

This command, typed at TRSDOS-16 Ready:

Radio fhaek

63




ASSEMBLER-16 THE LINKER

TRS-80°

LINK16 control filespec {options} comment

loads the Linker, executes the directives in the control
filespec, and produces an absolute program file. The
absolute program file will have the same name as the
control filespec, minus the extension.

If you omit the control filespec's extension, the Linker
appends the extension /CTL. However, if you omit the
extension and include the drive, the Linker treats the drive
as the extension.

LINKER OPTIONS

As with the Assembler-16, you can specify the one letter
options in one of four ways:

option switches the option ON
option=Y switches the option ON
option=N switches the option OFF
option=drive switches the option ON using

the specified drive number
(for the M and O options only)

The options and their defaults are:

L (Create Map File)

Creates a file containing a Linker map on the drive
specified. The Linker assigns this file the same filename
as the source, with the extension /MAP. The default is M=N.
O (Output Program File)

Creates a final, executable program file on the drive
specified. The default is O=Y.

P (Print Linker Map on Printer)

Prints the Linker map. The default is P=N.

Radio fhaek

64




ASSEMBLER-16 THE LINKER

TRS-80 °

T (Print Linker Map on Terminal)

Prints the Linker on the video display terminal. The
default is T=Y.

EXAMPLE LINK

This is an example of linking a control file named TEMP/CTL.
The next section, "The Linker Map" will use it to
demonstrate the the various maps the Linker outputs.

TEMP/CTL (created with the Editor) contains these
directives:

*[LINK OF TEMP/CTL

INCLUDE TEMP/OBJ

ORIGIN @209

INCLUDE TEMPB/OBJ

ORIGIN @509

INCLUDE TEMPC/OBJ

INCLUBE THREE/OBJ

END
Note: The word INCLUBE (in the next to the last line) is
intentionally misspelled. The section on "The Linker Map"

uses this misspelling to demonstrate how the Linker outputs
errors.

This command, typed at TRSDOS-16 Ready:
LINK16 TEMP {L=2,P,T=N} <ENTER>

causes the Linker to link an absolute program, following the
directives in TEMP/CTL, and:

. create a map file on drive 2 named TEMP/MAP (M=2)
. print the map on the printer (P)
. not print the map on the video terminal (T=N)
. create a program file named TEMP (0=Y is the
default)
THE LINKER MAP

The Linker map consists of the following:

1. linker control listing

Radio fhaek

65




ASSEMBLER-16

THE LINKER

TRS-80 °

allocation map
definitions map
undefined references map
summary

Ul W I
[ ] . L]

1. Linker Control Listing

The Linker outputs the linker control listing first. It

conta
inter

ins each directive from the control filespec
spersed with error messages.

The above example produces the following listing:

goegaL
gap92
pega3
ggapa
goa95
gogg6
gegeT7

kkkk*

ogp08

kkkkk

* LINK OF TEMP/CTL

INCLUDE TEMP/OBJ

ORIGIN @290

INCLUDE TEMPB/OBJ

ORIGIN @500

INCLUDE TEMPC/OBJ

INCLUBE THREE/OBJ

$ - ILLEGAL COMMAND

END

WARNING - UNRESOLVED EXTERNAL REFERENCE AT @@@502

The Linker prints error messages as it encounters them.
There are three classes:

ERRORS —-- these are caused either by syntax errors
in the control file or object code errors. (The
above example has an ILLEGAL COMMAND error due to
the misspelling of INCLUBE.)

WARNINGS -- these are to advise you that the Linker
might be interpreting your file in a different way
than you intended. (The warning in the above example
is due to an undefined symbol, MYSTERY SYMBOLIC

LABEL, which appears in the undefined references map.)

FATAL -- these are caused by errors in the object

code construction. You should never get one of these
errors when using the Assembler-16. These errors will
always cause the Linker to abort the linkage. Note
that an error line may be printed immediately before
the fatal diagnostic,.

Fadio fhaek

66




ASSEMBLER-16 THE LINKER

TRS-80°

Note that the above example lists the comment, *LINK OF
TEMP/CTL. However, this comment has no effect on the
linkage.

2. Allocation Map

The allocation map describes where in memory the Linker has
located the INCLUDEd object files (modules).

The above example produces this map:

ALLOCATION MAP

MODULE NO ORIGIN LENGTH DATE CREATOR VER
TEMP 1A go9a9E ———-— 11/24/81 AsSM-16 1.4
TEMPB 2A 2903200  ——=——- 11/24/81 AsSM-16 1.0
TEMPC 3 apa599 apagac 11/24/81 AsSM-16 1.0

The meaning of each column is as follows:

MODULE -- the linked object filename. Only the filename
(not the extension) is printed.

NO -- the sequential order in which the modules are
INCLUDEdA. If the module is part of an ASECT (an
absolute program section), this number is followed
by the letter A.

ORIGIN -- the memory address where the module is
loaded.
LENGTH -- the length of the module. The characters

—————— ' in this column indicate the module is part

of an ASECT and therefore the length is undefined.
DATE -- the date the module was created.

CREATOR -- the name of the assembler or compiler
used to create the module.

VER -- the version number of creator (1.8 for ASM-16).

The above example indicates that the Linker included
TEMP/OBJ, an absolute section, at address @gg@g@g.

Radie fhaek

67




ASSEMBLER-16 THE LINKER

TRS-80°

TEMPB/0OBJ and TEMPC/OBJ, both relocatable, are included at
hexadecimal 2@¢¢ and 5¢§@g. THREE/OBJ is not included, since
the word INCLUBE was misspelled.

3. Definition Map

The definition map lists all the symbol defined as external
by the DEF directive.

The above example produces this map:
DEFINITIONS
SYMBOL VALUE PROG
SYMBOLICLABEL BoP@52 1A

The meaning of each column is as follows:

SYMBOL -— the symbol itself. A maximum of 45 characters
are printed. (This example contains only one.)

VALUE -- the symbol's value

PROG -- the module which defined the symbol. If the

number is part of an ASECT, the letter A follows it.

The Linker does not sort this map. It prints the symbols in
the same order it encounters them.

The Linker will not print this listing if there are no
externally DEFined symbols.

4, Undefined Reference Map

This is a listing of all symbols referenced, but not
defined.

The above example produces:
UNDEFINED REFERENCES

SYMBOL
MYSTERYSYMBOLICLABEL

Radio Shaek

68




ASSEMBLER~-16 THE LINKER

TRS-80 °

indicating the file references only one undefined symbol --
MYSTERYSYMBOLICLABEL -- which was what caused the warning in
the directive 1listing.

The Linker prints the symbols in the same order it
encounters them. It does not print the map if there are no
undefined symbols.

5. Summary

This is the completion message, with a count of errors and
warnings.

The above example produces:

RSECT LENGTH = gagggc
PROGRAM ENTRY = g@gpgy
PROGRAM LENGTH = g@@50C

POS INDEPENDENT = NO

LINK COMPLETE: @@@@l ERRORS, @@F@P1l WARNINGS.

which shows that @@@C is the length of TEMPC/OBJ, the one
relocatable program section; @g@@@ is the originating address
of the entire program; @50C is the length of the entire
program; and the program is not position independent..

The Linker generated one error and one warning.

ERROR MESSAGES

This is a listing of the Linker error messages, divided into
three groups:

1. ERRORS

2. WARNINGS

3. FATAL
ERRORS

These messages alert you that the program will not link
properly.

FILE UNAVAILABLE, CODE= error code

Radio fhaek

69




ASSEMBLER-16 THE LINKER

TRS-80 °

The file included in the control file cannot be accessed for
the reason cited by the TRSDOS error code.

For example:
FILE UNAVAILABLE: 'filename', CODE = 24
indicates TRSDOS error 24 (file not found).

ILLEGAL COMMAND
The directive is not one of those allowed by the Linker.

SYNTAX ERROR
The directive has not been typed correctively.

WARNINGS

These messages warn you that the Linker might be taking a
different action than you intended.

DOUBLE DEFINED RSECT

The module has more than one RSECT (for example, a blank
RSECT and a named RSECT). The Linker allows only one RSECT
per module.

DOUBLE DEFINED SYMBOL: 'symbol'

The symbol enclosed in quotes is defined in two separate
modules. The Linker uses the first definition it
encounters,

ERRORS GENERATED DURING ASSEMBLY
There were errors generated during the assembly of the
module.

SIZE ERROR AT: absolute address

An external will not fit into the field reserved. The
Linker lists the absolute address of the modifiable part
of the instruction generating the error.

For example:

SIZE ERROR AT: @@@202
might occur when address 20@ of the module contains an
instruction such as:

LDW .DO, /external
with the Linker evaluating 'external' as greater than H'FFFF
(the maximum value that will fit into a word).

To solve the problem, put a '.L' after the name of the
external wherever it is referenced. For example:

Radio fhaek

79




.

ASSEMBLER-16 THE LINKER
TRS-80 °
LDW .DO, /external.L
will never generate a SIZE ERROR. (However, it does cost an

extra word of program storage over the previous example.)

Note that the address associated with the size error does

not indicate the address of the instruction. 1Instead, it

indicates the address of the modifiable field (the address
where the external will be loaded.)

UNRESOLVED EXTERNAL REFERENCE AT: absolute address

The Linker did not find a definition (DEF) for an external
reference (REF). The Linker lists the absolute address of
the instruction generating the error.

WARNINGS GENERATED DURING ASSEMBLY
There were warnings generated during the assembly of the
current module.

FATAL

These errors should NEVER occur in normal use of the Linker.
The Linker detects these errors primarily to support
development of compilers and assemblers.

If one of these errors occurs while using the Assembler-16,
it should be considered a BUG and be reported. See also the
OBJECT CODE DESCRIPTION section in this manual.

Note that unless otherwise stated, these errors are FATAL.
The Linker will abort with an error message.

DOUBLY DEFINED SECTION LENGTH
The Linker encountered two DEFINE SECTION LENGTH plexes in
the object stream.

END OF OBJECT ENCOUNTERED

The object code stream was improperly terminated (no END OF
OBJECT plex). This may be caused by terminating the
assembler (with BREAK key) before normal completion.

ILLEGAL POLISH EXPRESSION

An object code expression was encountered that does not
conform to the standards set forth in the object code
description.

MODULE HAS MORE THAN ONE PROCESSOR DEFINED
The DEFINE PROCESSOR plex was encountered more than once.

Radio Shaek

71




ASSEMBLER-16 THE LINKER

TRS-80 °

UNDEFINED EXTERNAL SYMBOL
A SYMBOL REFERENCE was made without that symbol previously
being defined.

UNDEFINED OPERATOR
An invalid operator was encountered during expression
evaluation.

UNDEFINED POLISH COMMAND
An invalid operand was encountered in expression
evaluation.

UNDEFINED RSECT SELECTED
An attempt was made to select a section (RSECT) that was not
previusly defined (opened).

RSECT LENGTH UNDEFINED

A define section length plex was not encountered in the
object stream. This is only a warning (the linker does
not abort).

Radie Shaek

72




ASSEMBLER-16 THE DEBUGGER

TRS-80 °

CHAPTER 5

THE DEBUGGER

Radio Sfhaek

73







ASSEMBLER-16 THE DEBUGGER

TRS-80°

CHAPTER 5/ THE DEBUGGER
The Model 16 Debugger (DEBUG) allows you to:

. debug an existing 68¢@@ machine code program
insert a 68¢g@9% machine code program into memory

The way to start the Debugger depends on which you want to
do.

(DEBUG will not load if it is not included in a file named
CONFIG16/SYS. See Appendix D if it does not load properly.)

STARTING THE DEBUGGER

To Debug an Existing Program...
To debug an existing program, type (at TRSDOS-16 Ready):
DEBUG ON <ENTER>
which turns ON a switch causing the Debugger to activate.
While this switch is ON, any program you load is loaded into
the Debugger. (The Debugger remains dormant until you load
a program.)
For example, with the DEBUG ON, type:
SAMPLE <ENTER>

which loads SAMPLE into the Debugger. The Debugger displays
the Register Display and a # prompt.

The # prompt indicates you are in the Debugger command mode
and can enter any of the Debugger commands. Type:

H <ENTER>
for a menu of all the commands.

To turn OFF the Debugger switch, type (at the Debugger #
prompt):

O <ENTER>

Radio fhaek

75




ASSEMBLER-16 THE DEBUGGER

TRS-80 ° —

or (at the TRSDOS-16 Ready prompt):

DEBUG OFF <ENTER>

To Insert a New Program...

To insert a new machine-code program with the Debugger, type
(at TRSDOS-16 Ready):

DEBUG <ENTER>

which causes the Debugger to activate, displaying the
Register Display and the # command prompt.

To insert a program beginning at address 5@@@, type:
C 5008 <ENTER>

the Debugger displays address 5@@@ (in parentheses and its
contents. To enter the MOVW instruction, type:

3BC <ENTER>
and the Debugger inserts 3@BC, the operation word for this
instruction, and waits for you to insert the next
instruction. (See Chapter 8, "Instructions", for
information on machine code operation words.)

Type Q <ENTER> to return to the # prompt. Type Q <ENTER>
again to exit the Debugger.

REGISTER DISPLAY
When you first start-up the Debugger, the Register Display
appears on your screen. Certain Debugger commands will
"call" it (cause it to appear again) or update it.

This is an example Register Display:

TRS-88% Model 16 DEBUG Version 3.4

PC=@@pPdggrR x=f N=@ 2=g v=g C=f IM=f S=U

A=g@8P18FE @P8UYPA4Y @USPIBAE @P8PlB6A FPPIIPPY PPEBPLAEE gg8p1886 @FY8P20pP
D PPPUPPES PPPIgePd WPYPIFFFF QUP0gPg00 pUg0sape peegeesg go0pgeRe pEIAFINS

~

Radio fhaek

76




ASSEMBLER-16 THE DEBUGGER

TRS-80°

Line 1 contains the contents of the PC (program counter
register and and the value of the condition codes. Notice
that the PC register is set to a "relative" address. (The
character R indicates the address is relative.)

TRSDOS-16 loads DEBUG in memory that is "invisible" to the
user. Therefore, a program origin address of zero is
actually a "relative zero". All addresses are relative to
the end of TRSDOS-16 and DEBUG. (See Appendix B, "Memory
Map.)

Line 2 contains the contents of each of the eight address
registers. (column 1 is register Af, column 2 is Al, etc.)

Line 3 contains the contents of each of the eight data
registers.

(The Debugger uses the same register notations as the
Assembler-16. See Section II for a listing of these
notations.)
You can display or change the contents of any of the
registers. To do this, type the name of the register
preceded by a period (.).
For example, at the # prompt, type:

.Af <ENTER>
and the Debugger displays the contents of register Af.
If you do not wish to change this, simply press <ENTER>. If
you do wish to change it, type the new value and then press
<ENTER>.

DEBUGGER COMMANDS

To execute a Debugger command, type the one-letter command
followed by <ENTER>.

some of the commands allow you to specify parameters. You
must type a blank space between the command and the
parameter,

The parameters you can specify are:

. value

Radie Shaek

77




ASSEMBLER-16 THE DEBUGGER

TRS-80°

. register (register direct)
. address
Specifying a value
To specify a value, you can use:
. a number
(must be hexadecimal)
. an ASCII character
(must be enclosed in quotes)

or an expression of values separated by these operators:

. addition (+)
. subtraction (-)

For example, when using the Change command, it prompts you
for a value. You could enter:

2121 <ENTER>

to insert the hexadecimal value of 2121,
'AB' <ENTER>

to insert the ASCII codes for 'A' and 'B', or
32+'A' <ENTER>

to insert 32 plus the ASCII code for 'A'.

Specifying a register directly

To specify a register directly, precede the register name
with the character @. This indicates direct register
addressing. (This is the opposite of the Assembler-16's use
of the @ notation.)

For example:

D @Al <ENTER>

displays the contents of register Al. (If Al contains 1111,
the Debugger displays 1111.)

Radio fhaek

78




//’(w\

ASSEMBLER-16 THE DEBUGGER

TRS-80 °

Specifying an address
To specify an address, you can use:
. a value
(as defined above)
. a indirect register, preceded by a period (.)
(the Debugger interprets the period as indirect
addressing.)
For example:
D 1999 <ENTER>
displays the contents of address 10¢fd.
D .Al <ENTER>

displays the contents of the address contained in register
Al. (If Al contains 1111, the Debugger displays the
contents of address 1111.)

D 199@+50
displays the contents of address 1#50.
When you specify an address, the Debugger assumes you mean
an address relative to base zero. You can change this
assumption by changing the value of the displacement
register (with the R command), and then specifying the
address with the letter 'R'.

For example, if you set the displacement register to a
relative 2000:

D 1g@@R
displays the contents of address 3¢0@g@. The Debugger
computes this address as the sum of 1@@@ and 2¢0¢@, the
contents of the displacement register.

D 108@+50R

displays the contents of address 305§.

The Debugger commands are:

Radio fhaek

79




ASSEMBLER-16 THE DEBUGGER

TRS-80°

A (Address Stop Command)

A addressl,address2,mask
A addressl,register,mask

Executes the program being debugged until the contents of
address2 or register is changed.

You can specify the size of address2 or register with:
/B (byte)
/W (word)
/L (long word)

addressl is optional. 1If specified, execution begins at
addressl. Otherwise, execution begins at the current
address.

mask is also optional. It allows you to mask address2
or register.

Examples:
A ,@A5

executes the program from the current position until
register A5 is changed.

A ,@A5,FFg@g

stops execution when the third and fourth bytes (specified
by the mask) of register A5 is changed.

A 50@,1044/L
executes the programming beginning at address @5¢@ until the
long word at 1@44 is altered.
B (Breakpoint Command)

B breakpoint, address

B breakpoint
B breakpoint/

Allows you to:

Radio fhaek

8g




ASSEMBLER-16 THE DEBUGGER

TRS-80°

. set up to eight breakpoint addresses
. display the contents of a breakpoint
. reset a breakpoint

Be sure to set the breakpoint address at the beginning of an
instruction -- never in the middle of an instruction.

For example:

B 1,1099 <ENTER>
sets 1P@g@ as the first breakpoint address. When you execute
your program (with the G command), it will stop executing
when it reaches address 1808.

B 1 <ENTER>
displays breakpoint 1. You can enter a new value or simply
press <ENTER>. (******** means the breakpoint is not set.)
Both the relative and non-relative values are displayed.

B 1/ <ENTER>
resets breakpoint 1 (to 32 bit-1).

B <ENTER>

displays all the breakpoints currently set.

C (Change Command)

C address
Enters the "change mode" displaying the contents of the
specified address (in parenthesis), followed by its
contents.

Type value <ENTER> to insert a new value for that address.
(value can be one to four bytes.)

Type / <ENTER> to see the contents of that address again.

Press <ENTER> to see the contents of the next address (the
next memory word).

Radio fhaek

81




ASSEMBLER-16 o THE DEBUGGER
TRS-80

Press <CTRL> <9> <ENTER> to see the contents of the previous
word (the previous memory word).

Type Q <ENTER> to exit the "change mode".
Example:
C Fg6A
displays the contents of address F@6A.
307A <ENTER>
changes the contents of that address to 3¢7A.
/ <ENTER>
displays the address with its new contents.
<ENTER>
displays the next address.
<CTRL> <9> <ENTER>
displays the previous address.
Q <ENTER>

exits the change mode.

D (Display Command)

D address or register,address or register,address or
register

calls the Register Display and displays the contents of up
to three address or registers in the top right-hand corner.

The Debugger will continually update this display as you
debug the program,

Radie fhaek

82




ASSEMBLER-16 ® THE DEBUGGER
TRS-80

Examples:

D a4¢B, .A5, QA4
displays the Register Display with the contents of address
A40B, the address specified by register A5, and the contents
of register A4.

D @A2 <ENTER>

displays the contents of register A2.

E (Erase Breakpoints Command)

E

Erases the breakpoints.

G (Go Command)

G address
executes the program beginning at the specified address.
Execution continues until the Debugger reaches a breakpoint
(set with the B command) or the end of the program.

address is optional. If omitted, execution begins at the
current address.

Example:

G 4@ 2B <ENTER>
executes the program being debugged at address @4@2B and
continues until the Debugger encounters a breakpoint or the
end of the program.
H (Help Command)

H

Displays all the Debugger commands.

Radio fhaek

83




ASSEMBLER-16 THE DEBUGGER

®
TRS-80 —~
N (Next Instruction Command)
N
executes the next instruction and then calls the Register
Display.
After entering the N command, simply press <ENTER> to
execute another "next" instruction. Executing any other
command exits this "next instruction execution mode".
If the next instruction is a call to a subroutine, the
Debugger executes the entire subroutine. (Use the S8 command
to single step through the subroutine.)
Example:
N
executes the next instruction in the program currently being
debugged.
0 (Quit Debug with DEBUG OFF Command) ah
(0]
Turns DEBUG OFF and exits the Debugger. The next program
will load into the normal TRSDOS-16 Ready.
Q (Quit Debug with DEBUG ON Command)
Q
Exits the Debugger leaving DEBUG ON. The next program will
load into the Debugger.
R (Relative Addressing Command)
R value
displays and changes (if you specify value) or displays
and allows you to change (if you omit value) the contents
AN
®
Radioe fhaek

84




ASSEMBLER-16 THE DEBUGGER

TRS-80 °

of the displacement register. At start-up, the value of
the displacement register is zero.

The R command helps in debugging relocatable program
sections. By specifying an address as Relative, the
Debugger will add to this address the value of the
displacement register.
Examples:

R <ENTER>
displays the value in the displacement register. Press
<ENTER> to leave it unchanged. Enter a new value to
change it. For example:

1009 <ENTER>
causes hexadecimal 1000 to be the new value of the
displacement register. If you specify a relative address,
such as:

G 2¢@PR <ENTER>
the Debugger will interpret this as:

2000 + 1999 (the value in the displacement register)

causing the Debugger to begin program execution at address

3909.

R 3333 <ENTER>
causes hexadecimal 3333 to be the new value in the displacement
register,

S (Step Command)

S
executes the next instruction and calls the Register Display.

The S command is the same as N, except S will single step
through a subroutine.

Radio fhaek

85




ASSEMBLER-16 THE DEBUGGER

TRS-80 °

As with the N command, press <ENTER> to execute the next
instruction. To exit the "single stepping mode", enter a new
command .

Example:
S <ENTER>

executes the next instruction in the program being debugged.

V (View Command)

V addressl,value
VvV addressl,address?2

displays the contents of the addresses beginning with
addressl (or the current address) and continuing for the
number of bytes specified by value.

If the value is larger than addressl, the Debugger
interprets it as address2. In this case it displays the
address beginning with addressl and ending with
address2.

If you specify only addressl, the Debugger displays 16
bytes beginning with addressl.

Examples:
V 5000,190 <ENTER>
displays 19# bytes of memory starting at address 50¢#.

vV 5099 ,5500

displays memory starting at address 5@@@ through address
5500.

V 5093 <ENTER>
displays 16 bytes of memory starting at address 5¢¢f.
V <ENTER>

displays the next 16 bytes of memory.

Radie Shaek

86




THE DEBUGGER

ASSEMBLER-16 TRS-80 ®

vV .Af

displays 16 bytes of memory starting with the address
specified by the contents of register Af.

Radio fhaek

87







ASSEMBLER-16 o INTRODUCTION
TRS-80

The Assembler-16 contains an easy-to-use set of assembly
language mnemonics for developing Motorola MC68@@@ programs
on the TRS-8f Model 16.

Please note that the Assembler-16 mnemonics are not the same
as the Motorola mnemonics. This is due to a major effort
among programming and engineering organizations to
standardize mnemonics.

Since the Assembler-16 mnemonics and notations are different
from Motorola's, you will need to use this Reference Guide
to learn the Assembler-16 ones.

However, you will probably find it helpful to use these
books to understand the logic of the 68@f@@ Microprocessor:
MC68@g@@F: 16-BIT MICROPROCESSOR User's Manual,
Motorola Incorporated, 1984
The 68#@@F: Principles and Programming, by Leo J.

Scanlon: Howard W. Sams & Co., Inc.,
Indianapolis, Indiana, 1981.

Radio fhaek

91




ASSEMBLER-16 o INTRODUCTION
TRS-80

KEY TO NOTATION

The following notation conventions are used in this
section:

1 - the item within is optional.

a byte length string (8 bits).

- a word length string (16 bits).

- a long word length string (32 bits).

an undefined length string.

Xp - an expression (described in chapter 2).
- 1in place of a blank space.

W
|

o0 cH
|

The registers are represented as follows:

Ad or Dd - an address or data register used as a
destination operand.

An - one of the eight address registers Af-A7 (n
specifies the register number).

As or Ds - an address or data register used as a source
operand.

Au or Du - an address or data register used as an
upper-bounds operand.

Dn — one of the eight data registers D@-D7 (n
specifies the register number).

Rn - any data or address register (n specifies the
register number).

Ri - any register used as indexed register with
optional .W (word) or .L (long) length
specified.

Ri - can be either An.W, An.L, Dn.W, or Dn.L.

SP ~ the stack pointer.

SSP - the supervisor stack pointer register (SP in
System Mode).

usp - the user stack pointer register (SP in the

User Mode).

Radio fhaek

92




ASSEMBLER-16 68008% ORGANIZATION

TRS-80 °

CHAPTER 6

68089 ORGANIZATION

Radio fhaek

93




ASSEMBLER-16 68008 ORGANIZATION
TRS-80 °

CHAPTER 6/ 6888 ORGANIZATION

The 68@@F% contains eighteen registers: eight data
registers, eight address registers, a program counter, and a
status register. Both address and data registers can be
used for word and long word arithmetic operations as well as
for indexing. In addition, address registers can be used
for indirect addressing; and data registers can be used for
byte arithmetic operations.

Data registers are 32 bits in size. Byte operands occupy
the low order 8 bits, word operations the low order 16 bits,
and long word operands the entire 32 bits. The least
significant bit is always labeled as zero.

When one of the low order portions of a data register is
used, only that low order portion is changed. The remaining
high order position is not used or changed.

Address registers are also 32 bits in size. However, they
do not support byte-sized operands. Depending on the
operation, either the low order 16 bits (word) or all 32
bits (long word) are used. When the address register is a
destination operand, the entire register is affected. 1In
word size operations, the operands are sign extended to 32
bits before the operation is performed.

The user stack pointer (USP) is another 32 bit register.
While you are in the user mode, it provides the stack
address in specific stack operations such as PUSHA and LINK.
While in the supervisor mode, you can use it as an operand.

The system stack pointer (SSP), also 32 bits, serves as

the stack register while you are in the supervisor mode.
While in the supervisor mode, you can use USP as an operand.
You can never use SSP as an operand, nor can you use USP as
an operand while in the user mode.

Note: TRSDOS-16 does not allow you to get into the
supervisor mode.

Another 32 bit register is the program counter. It
contains the memory address of the next sequential
instruction to be executed.

Radio fhaek

95




ASSEMBLER-16 o 68900 ORGANIZATION
TRS-80

The status register is a 16 bit register which contains
certain system information as is illustrated below:

15 14 13 12 11 1§ 987 6 5 43218
[T] _[s] [ I | [X|N[z]v]c]

In this diagram:

T - contains the status of the trace mode (set when
trace is on, cleared otherwise).

S - reflects the current status of the CPU (set in
supervisor mode; cleared in user mode).

I - contains the level of interrupt recognized by the
CPU.

Bits 8 through F make up the system byte of the status
register. You can change these bytes only from the
supervisor mode.

The least significant byte (bits zero through seven) of the
status register is known as the "user byte" or the
"condition code register®™ (CCR). You can address this

byte from either the user or supervisor mode. The CCR
contains information pertaining to the actions of the
current instruction. The bits in the CCR are:

X - The eXtend bit is set when an instruction (like
ADD) causes a carry at the most significant bit.

N - The Negative bit is set when an operation
results in a negative number (i.e., the most
significant bit of the operand is set in an
arithmetic operation).

Z - The Zero bit is set when an operation results in
a zero value.

A - The oVerflow bit is set when an operation causes
overflow of the operand (i.e., the resulting
number is too big for the size of the operand.

Cc - The Carry bit is set when an instruction (like
ADD) causes a carry at the most significant bit.

Radio fhaek

96




ASSEMBLER-16 o 689989 ORGANIZATION
TRS-80

Note: The carry and extend bits are set together during
most operations.

Radio fhaek

97




ASSEMBLER-16 ® 68049 ORGANIZATION
TRS-80

MEMORY ORGANIZATION

With the 68@#F processor, data can be accessed by using byte
(8 bits), word (16 bits), or long word (32 bits) operations.
All words and long words begin on even-numbered addresses.

The most significant byte is stored first and the least
significant byte is stored last:

15 14 1312 11 1§ 9 8 7 6 5 4 3 2 1 &
word @Pgggg
byte gggpgg l byte gggggl
word @@gpgg2
byte ggg082 l byte ggpgg3

word FFFFFE
byte FFFFFE I byte FFFFFF

Long Word/Register/Address Organization - 32 Bits (MSB and
LSB signify the most and least significant bits,
respectively):

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 g

MSB high order

long word # . . . . . . . . . . . .. ...
low order LSB
high order

long word 1 . . . . . . . . . . . . e e

low order

long word 2 . . . . . . . . . . . . . ...

Decimal Data - 2 binary coded decimal digits equals 1 byte
(MSD and LSD signify the most and least significant bits,
respectively):

Radio Sfhaek

98




ASSEMBLER-16

68489 ORGANIZATION

TRS-80 °
15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 @
(MSD) (LSD)
BCD ﬂ BCD 1 BCD 2 BCD 3
BCD 4 BCD 5 BCD 6 BCD 7
®
Radio fhaek

99




ASSEMBLER-16 68098 ORGANIZATION

TRS-80 °

INSTRUCTION FORMAT

When the Assembler-16 translates the 68¢@f instructions into
machine code, it arranges them so that the instruction word
(16 bits) comes first, followed by any operands, which may
include up to four more words. The result of this operation
is stored in the destination. The source is the second
operand. This is illustrated below:

15 14 13 12 11 1g 9 8 7 6 5 4 3 2 1 g
operation word
(first word specs operation & mode)
immediate operand
(if any, one or two words)
source mode register extension
(if any, one or two words)
destination mode register extension
(if any, one or two words)

The typical format of the operation word follows, where mode
and register are three bit fields.

Radio fhaek

199




ASSEMBLER-16 68098 ORGANIZATION

TRS-80°
15 14 13 12 11 14 9 8 7 6 5 4 3 2 1 g
[ X X X X X X X X X X | mode | reg. |
®
Radie fhaek

191




ASSEMBLER~16 68098 ORGANIZATION

TRS-80 ©

ADDRESSING MODES

The 680@f allows you to address data seven different ways:

1.

Implicit - The operand is implied from the
instruction.

Register Direct - The operand or operands are in a
data and/or address register.

Address Register Indirect - The operand is in a
memory location pointed to by an address register.

Indirect with Indexing - The operand is in a memory
location which is pointed to by the sum of an address
register and an index register.

Memory Direct (or Absolute) - The operand is in a
memory location which is supplied by an expression.

Program Relative - The operand is in a memory
location which is offset from the PC by a given
displacement.

Immediate - The operand follows the instruction word.

Radio fhaek

192

S




ASSEMBLER-16 68008 ORGANIZATION

TRS-80 °

Implicit Addressing

Some instructions make implicit reference to the program
counter (PC), the system stack pointer (SP), the supervisor
stack pointer (SSP), the user stack pointer (USP), or the
status register (SR). The table below provides a list of
these instructions and the registers implied.

INSTRUCTION IMPLIED REGISTER(S)
branch conditional (Bcc), branch (BR) PC
break (BRK) SSP SR
break on overflow (BRKV) SSP SR
call to subroutine (CALL) PC SP
check register against bounds (CHK) SSP SR
test condition decrement and branch (DBcc) PC
signed divide (DIV) SSP SR
unsigned divide (DIVU) SSP SR
link and allocate (LINK) SP
move condition codes (MOVE CCR) SR
move status register (MOVE SR) SR
move user stack pointer (MOVE USP) usp
push effective address (PUSHA) SP
return from exception (RETI) PC SSP SR
return and restore condition codes (RTR) PC SP SR
return from subroutine (RET) PC SP
unlink (UNLK) SP

Radio fhaek

143




ASSEMBLER-16 o 6890@ ORGANIZATION
TRS-80

Register Direct Modes
The operand is in one of the 68@@F registers. So, it could
be in either Ag-A7, D@G-D7, CCR, SR, or USP (USP can only be
used in the supervisor mode).
Data Register Direct: .Dn
The operand is in the specified data register. For example,
CLRW .Dg
clears the least significant word in data register DO.
The operand is a data register; length (1) is 1, 2, or 4

bytes.

31 g

OPERAND (Dn)

Address Register Direct: .An

The operand is in the specified address register. For
example,

MOVL .Af, .Al
moves the long word contents of address register Af@ to

address register Al.

The operand is an address register; length (1) is 2 or 4
bytes (this addressing mode is valid for word and 1long
operations only).

Radio fhaek

194




ASSEMBLER-16 68084 ORGANIZATION
TRS-80 °

31 g

OPERAND (An)

Radio fhaek

145




ASSEMBLER-16 o 68093 ORGANIZATION
TRS-80

Memory Address Modes
The operand is a memory location pointed to by the specific
mode.
Address Register Indirect: @An

The operand is in a memory location pointed to by an address
register. The addressing mode is used to address data.

For example:
CRLB @Ag

clears the byte at the memory location referenced by address
register Af.

The operand is in a memory location; length is 1, 2, or 4
bytes.

31 '}

ADDRESS REGISTER (An)

J,

MEMORY

OPERAND

Address Register Indirect Postincrement: @An+

The operand is a memory location pointed to by the contents
of an address register (AO-A7).

Radio fhaek

146




ASSEMBLER-16 6800% ORGANIZATION

TRS-80 °

When the operation is complete, the address register is
incremented by one, two, or four. The increment size
depends on whether the size of the operand is byte, word, or
long word. If the address register is the stack pointer (SP
or A7) and the operand is one byte, the address is
incremented by two rather than one to keep the stack pointer
on a word boundary. This addressing mode causes data mode
memory accesses.,

For example:
CLRW eAg+

clears the word at the memory location referenced by address
register Af and then increments Af@ by 2.

The operand is in a memory location; length is 1, 2, or 4
bytes.

31 g

ADDRESS REGISTER (An)

OPERAND LENGTH -——=> + €mmm———

MEMORY

OPERAND

Address Register Indirect Predecrement: —-@An

Radio fhaek

197




ASSEMBLER-16 68909 ORGANIZATION

TRS-80 °

The operand is in a memory location pointed to by the
contents of an address register (AO-A7).

Before the operand location is used it is decremented one,
two, or four. The decrement size depends on whether the
operand is size is byte, word, or long word. If the address
register is the stack pointer and the operand size is byte,
the address is decremented by two rather than by one to keep
the stack pointer on a word boundary. This addressing mode
causes data mode memory accesses,.

For example,
CLRL -@ag

Decrements address register Af by 4 and then clears the long
word at the memory location referenced by Af.

The operand is in a memory location; length is 1, 2, or 4
bytes.

31 g

ADDRESS REGISTER (An)

OPERAND LENGTH |---=>| - [<¢===—--

MEMORY

OPERAND

Radio fhaek

108




ASSEMBLER-16 o 6890@% ORGANIZATION
TRS-80

Address Register Indirect
with 16-bit Displacement: /exp@An

The operand is a memory location pointed to by the contents
of an address register plus a 16 bit expression which is
sign extended to 32 bits by the processor. This addressing
mode causes data made memory addresses. By branch
instruction, it can refer to program locations.

For example,
CLR seagd

clears the word at the memory location given by the sum of
address register Af and 8.

The operand is a memory location; length is (1) =1, 2, or 4
bytes

31 g

ADDRESS REGISTER (An)

¥

31 16 15 ']
T SIGN
l EXTENSION EXPRESSION |[---> +
MEMORY
OPERAND
®
Radio fhaek

199




ASSEMBLER~-16 o 680989 ORGANIZATION
TRS-80

Address Register Indirect Indexed
with 8-bit Displacement: /exp@An(Ri)

The operand is a memory location determined by the sum of
the contents of the specified address register, an index
register (either a double word or a sign-extended word) and
the 8-bit expression which is sign extended to 32-bits by
the processor. This mode causes data mode memory accesses,
except when used with the BR and CALL instructions.

For example,
CLRW 5@Ag(DM)

clears the word at the memory location given by a sum of
five, address register Af, and index register DM.

The operand is in a memory location:; length is 1, 2, or 4
bytes.

Radio fhaek

119




ASSEMBLER-16 680048 ORGANIZATION

TRS-80 °

31 g

MEMORY ADDRESS (An)

¥

31 8 7 ')

T TsIeN T T
EXTENSION EXPRESSION +

LONG INDEX REGISTER

OR-—-> +
31 16 15 g
SIGN WORD
EXTENSION INDEX
______ REGISTER
MEMORY
OPERAND
®
Radie Ffhaek

111




ASSEMBLER-16 68099 ORGANIZATION

TRS-80 °

Special Address Modes

The operand is a memory location pointed to by an
expression.

Short Absolute: /exp [.W]

The operand is a memory location pointed to by a 16 bit
expression which is sign-extended to 32 bits by the
processor. This addressing mode causes data mode memory
accesses., With branch instructions, it can be used to
reference program locations.

For example,

CLRW /SUM.W
clears the word at the memory location given by SUM (the
address of SUM has been assigned by a directive such as RES

or DATA).

The operand is in a memory location; length is 1, 2, or 4
bytes.

31 16 _15 g
STIGN
EXTENSION EXPRESSION
MEMORY
OPERAND

Long Absolute: /expl[.L]

Radio fhaek

112




ASSEMBLER-16 o 68000 ORGANIZATION
TRS-80

The operand is in a memory location pointed to by a 32 bit
expression. The first word of the expression the high order
part of the address. The second word of the expression is
the low order part of the address. This addressing mode can
be used to address data. With branch instructions it can be
used to reference program locations.

For example,

CLRW /HEADING.L
clears the word at the memory location given by HEADING (the
address of HEADING has been assigned by a directive such as

RES or DATA).

The operand is in a memory location; length is 1, 2, or 4.

Radio fhaek

113




ASSEMBLER-16 68098 ORGANIZATION

TRS-80 °

15 g
FIRST
EXPRESSION

15 g
SECOND
EXPRESSION

31 16 15 /]

CONCATENATION
OF TWO WORDS

MEMORY

OPERAND

Program Relative: exp@PC

The operand is in a memory location pointed to by the sum of
the program counter (PC) and a sign extended 16 bit
expression. The value of the program counter is the
address of the 16 bit displacement. This addressing mode
causes program mode memory accesses. With the branch
instruction it can be used to refer to program locations.

For example,

BR LOOP

Radie fhaek

114




ASSEMBLER-16 68099 ORGANIZATION

TRS-80 °

branches to memory location LOOP. Note that the "@PC" is
optional here.

The operand is in a memory location; length is 1, 2, or 4
bytes.

31 g

PROGRAM COUNTER

¥

31 16 15 g
SIGN
EXTENSION EXPRESSION |-==--> +
MEMORY
OPERAND

Program Relative with Index: exp@PC(Ri)

The operand is in a memory location pointed to by the sum of
the program counter, the index register (Ri) and the 8-bit
expression. Both the index register and the expression are
sign-extended to 32 bits by the processor. The value in the
program counter is the address of the displacement value.
This addressing mode causes program mode memory references.

For example,

CLRW NUME@PC(D1)

Radio fhaek

115




ASSEMBLER-16 o 68008 ORGANIZATION
TRS-80 ~

clears the word at the memory location given by the sum of
NUM, the PC, and data register Dl.

The operand is in a memory location; length is 1, 2, or 4
bytes.

31 g

PROGRAM COUNTER

v

31 8 7 [}
SIGN
EXTENSION EXPRESSION +
31 g

LONG INDEX REGISTER

OR-—-> + /~\
31 16 15 -
SIGN WORD
EXTENSION INDEX
______ REGISTER
MEMORY
OPERAND
Immediate Data: #expl[.W] #expl.L]
N
®
Radio fhaek

116




ASSEMBLER-16 o 68¢¢@ ORGANIZATION
TRS-80

The operand follows the instruction word in either one or
two extension words, depending on the size of the operation:

Byte Operation - The operand is the low order byte of
the first extension word.

Word Operation - The operand is the extension word.

Long Operation - The operand is in the two extension words.
The high order 16 bits are in the first
extension word; the low order 16 bits are
in the second extension word.

For example,

LDW .D@,#H'112F
loads the data register DF with the immediate data H'1l1l2F.
The operand is in the memory location immediately following

the instruction; length is 1 or 2 bytes for 1 extension word
and 4 bytes for 2 extension words.

Radio fhaek

117




ASSEMBLER-16 6800@ ORGANIZATION

TRS-80 °

31 g

PROGRAM COUNTER

CONSTANT (2) |===->| + [€——=aen

OPERAND

Radie fhaek

118




ASSEMBLER-16 o ASSEMBLER-16 PROGRAM
TRS-80

CHAPTER 7

THE ASSEMBLER-16 PROGRAM

Radie fhaek

119




ASSEMBLER-16 o ASSEMBLER-16 PROGRAM
TRS-80

CHAPTER 7/ THE ASSEMBLER 16 PROGRAM

An assembly language source program can contain:

- Labels

- Instructions, Directives, or Programmed Operations
- Operands

~ Comments

These are organized into a program line in one of the
following ways:

[label ]bb[ INSTRUCTION]lbb[operand(s) [1l]]lbbl[comment],
[label ]bb[DIRECTIVElbbloperand(s) [1]]lbb[comment] or

[label 1bb[ PROGRAMMED OPERATION]bboperand(s) [l]lbb[comment]

All fields are described as optional. A statement will have
at least one field. Others will be optional depending on
the statement.

LABELS

A label statement begins in column 1. It can be either
global or local. A label must be followed by at least two
spaces.

Global -

If the label is global (accessible by any main programs or
subroutines), it can contain up to 45 characters. The first
character must be alphabetic, the next 45 nonblank
characters can be alphabetic, numeric, or an underline. No
more than one consecutive blank space is permitted in a
symbol. Single blanks are not significant. Two global
labels which match the first 45 nonblank characters are the
same to the Assembler-16.

A global label can be the only entry on a source input line
(this is known as a "hanging label"). Any reference to a
hanging label will, in effect, be a reference to the
statement following the hanging label.

Radie fhaek

121




ASSEMBLER-16 o ASSEMBLER-16 PROGRAM
TRS-80

Local -

If the label is a local label (defined only within the
current program), it is defined on the current location
counter. Local labels consist of a dollar-sign character
($) followed by a single integer. Local labels are used in
the same way global labels are except that the scope is
delimited by global labels.

INSTRUCTIONS
There are three types of instructions you can use:
- Mnemonics
- Directives

- Programed Operations
Mnemonics

The instruction (mnemonic) field can begin anywhere except
in column one. 1If there is a label, two blanks must
separate the label and instruction. The mnemonic field
contains one of the allowed M68g@F operation mnemonics,
followed by an operand length (1) indicator where needed.

Length -

With most instructions, you may specify the length of the
operand on which it will act. This length (1) can be:

B - byte (8 bits)
W - word (16 bits)
L - long word (32 bits)
For example:
ADDB
signifies an ADD instruction of one byte (8 bits).
If you do not specify a length, the Assembler-16 assumes a
length. If the Assembler-16 cannot determine the length, it

assumes word length and issues a warning to that effect.

The following table illustrates the length assumed by the
Assembler-16:

Radio fhaek

122




ASSEMBLER-16 ASSEMBLER-16 PROGRAM

TRS-80 °
First Operand: B W L U
B B B B B
Second W B W W W
Operand: L B W L L
U B W L U

You cannot specify length on unsized instructions or on
instructions with only one size possibility.

Directives

The same basics that apply the instructions, apply to
directives:

The label if present, begins in column one with two
blanks separating it from the directive. If there is
no label, the directive can begin in column two. Some
directives require either a label in the statement or
a hanging label preceding the statement.

The operand field syntax depends on the directive. The
field begins two or more blank spaces beyond the end of
the directive field. The field is terminated by two
consecutive blanks not inside a quoted string.

The optional comments' field is two blank spaces after
the operand field. If there is no operand, it begins
two positions after the directives field.

Programed Operations

The format for programmed operations is similar to that of
directives:

The programmed operation field contains a predefined
program operator. It is defined in a user-defined
opcode directive statement (in the source program)
prior to its use as an opcode. This is done with the
FORM directive (see Chapter 9).

The operands are likewise predefined.

Radie fhaek

123




ASSEMBLER-16 ASSEMBLER-16 PROGRAM
TRS-80 ©

The label, if any, is defined at the current location
counter.

OPERANDS
The optional operand field is separated from the mnemonic
field by at least two blank spaces. The format of the
operands depends upon the instruction; @, 1, 2, or more
operands may be permitted. In certain addressing modes an
operand length (1) can be optionally stipulated:
.W = word
.L = long word
General Operand Rules:

1. Multiple operands are separated by a comma.

2. Operands are checked by the Assembler-16 both by number
and by addressing modes.

3. Each operand must be valid for the instruction being
performed.
4. Single blank spaces are permitted within symbols and

around operators and special characters.

5. Two or more blank spaces terminate the operand field
and begin the comment field unless the blank spaces are
within a quoted string.

COMMENTS

The optional comment field is separated from the previous
field by at least two blanks. You cannot have a comment
with a hanging label, nor may you have a comment on an END
statement which does not have an entry point specified. A
comment can occupy a whole line if there is an asterisk (*)
in column one.

Radie fhaek

124




ASSEMBLER-16 o ASSEMBLER-16 PROGRAM
TRS-80

EXPRESSIONS

Expressions occur as operands of machine instruction,
assembler directive statements, or as programmed operation
statements. An expression consists of one or more terms
separated by optional operators.

Each term in an expression may be:

- a self-defining constant,

- a symbol (local or global),

- the program location counter character (*), or
- a parenthesized expression.

Constants may be decimal, hexadecimal, binary, octal, or
character constants:

Hexadecimal constants consist of a string of hex digits
preceded by capital H quote (H').

Binary constants consist of a string of binary digits
preceded by capital B quote (B').

Octal constants consist of a string of octal digits
preceded by capital Q quote (Q').

A Character constant is a single character preceded by
a quote (single or double). Packed character constants
are not allowed.

A local or global symbol represents an address. The
Assembler-16 uses the symbol as a displacement to the PC
register.

The program counter (PC) results in a 32 bit displacement
of the current statement.

Expression evaluation is left to right with unary operator
precedence. Parentheses may be used to change the order of
expression evaluation. The operators used to build an
expression are arithmetic or logical.

Arithmetic operators act upon 32 bit signed integer
guantities with negative numbers in twos complement format.

+ 1is addition

Radio fhaek

125




ASSEMBLER-16 ASSEMBLER-16 PROGRAM
TRS-80 °

- 1is unary minus or subtraction
* is multiplication
/ 1is signed division

Only addition and subtraction are permitted using
relocatable values.

Logical operators act upon 32 bit binary unsigned numbers.

.AND. is logical AND
.XOR. is logical XOR
.OR. 1is logical OR
.NOT. is logical NOT
.SHL. is shift left logical

where
A.SHL.B

shifts value A left B bits if B is positive and shifts value
A right (-B) bits if B is negative.

The Assembler-16 computes the size attribute of an
expression from the size attribute of the terms of the
expression. If exactly one term has a non-U size attribute,
and all other terms have a U size attribute, then the
expression inherits the non-U size attribute. If more than
one term has a non-U size attribute, or if all terms have a
U size attribute, then the expression is assigned a size
attribute of U.

Radio fhaek

126




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

CHAPTER 8

INSTRUCTIONS

Radio fhaek

127




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

CHAPTER 8/ INSTRUCTIONS

Description

In this chapter, each instruction is listed alphabetically.
They are either listed individually or as part of an
instruction group.

Instruction Groups

Some of the instructions fall into an instruction group.
Each instruction within the group uses the same mnemonic,
but the assembler-16 translates them into different machine
codes. Preceding each instruction group is an overview
giving the general function of the instruction group.

Individual Instructions
Some instructions have only one form. The function of
individual instructions follows its syntax.

Syntax

The syntax consists of the mnemonic, the sizes allowed, and
the addressing modes permitted. For example:

LDA .Ad,/expl.W or .L] Operand length(l) = L
.Ad,[expl@As[(Ri)]
.Ad,expl@PC[(Ri)]]

The operand length is long (L); hence the mnemonic is LDA.
The destination operand is an address register (.Ad), and
the source operand may be either :

1. an absolute short or long address ( "/expl.W or
LLIM )

2. an indirectly derived address with optional
displacement and index ( "[expl@As[(Ri)]" )

3. a program relative address with optional index

( "expl@PCI(Ri)II"™ )

Radie fhaek

129




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

Condition Codes

After execution of the instruction, the status of the
condition codes may change. This change is reflected under
"Condition Codes". Each bit of the condition code register
(CCR) may be listed as:

- the bit is unaffected by the instruction

# the bit is cleared (reset to @) after the
instruction is executed

* the bit is either set to 1 or reset to @# based on
the result of the operation

U the bit is undefined for the operation

For example:

X N Z Vv C
| - * * g @ ]
This means that the X bit is not affected, the N and 7 bits

are set or cleared based on the result of the operation, and
the V and C bits are always cleared.

Instruction Fields

The Assembler-16 translates the instruction into machine
code. This machine code is referred to as the "Instruction
Field". For example:

15 14 13 12 11 14 9 8 7 6 5 4 3 2 1 J}
| @ 1 [/} [} [/] g 1 g |size|] mode | reg. |

This is the instruction code for CLeaR. The top line refers
to the bit number in the instruction word and the numbers in
the second line refer to the actual bit. 1In this example,
bits 8-15 contain the machine code for the CLeaR
instruction.

The word "size" is listed under bits 6-7. This refers to
the size of the operand to be CLeaRed (i.e.,byte, word, or
long word). Under bits 3-5 is the word "mode". This refers
to the addressing mode (e.g. direct address register, short
address, etc.) The addressing mode takes three bits to
describe, and these codes are listed on the next few pages.

Radie fhaek

139




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

Under bits @#-2 is the word "register". This refers to the
register number used by the instruction. This value also
requires three bits and the codes for each register are
listed on the following pages. For example, the
instruction:

CLRL .D1
generates the following code:

15 14 13 12 11 1§ 9 8 7 6 5 4 3 2 1 #
(g1 g g g g 1 g 1 g @ @ p B p 1]

(Note: The instruction codes may vary from the example
above, depending on the number of operands, the sizes
allowed, etc.)

REGISTER/MODE CODES

Reg./mode
Fuanction Mnemonic Mode Code Reg.
Code
Data Register Direct = .Dn ga9
Address Register = ,An 281
Address Register Indirect = @An g1g
Address Register Indirect = @An+ g11
Postincrement
Address Register Indirect = —-@An 199
Predecrement
Address Register Indirect = exp@An 191
16-bit displacement
Address Register Indirect = exp@An(Ri) 119 n

Indexed with 8 bit displacement.
This mode requires an additional one word extension:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 g
|D/A] reg. |w/L | gl g 4] displacement value |

Radio fhaek

131




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °
Bit 15 -
# = data register is index register
1l = address register is index register

Bits 14 through 12 -
index register number

Bit 11-
# = sign extended, low order integer in index
register
1l = long value in index register

Absolute Short Address = /expl .W] 111 200
Absolute Long Address = /expl.L] 111 g4g1
Program Relative = exp @PC 111 21g
Program Relative with = exp @PC(Ri) 111 g11

Index

This address mode requires one word of extension:

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 @
|ID/Alregister[W/L] § [ # [ # | displacement value |
Bit 15 -
@ = data register

1 address register

Bits 14 through 12 -
index register number

Bit 11 - Index size

g = sign extended, low order word in index
register.
1 = long value in Index Register.
Immediate Short = #expl.W] 111 199
Immediate Long = $expl.L] 111 1909
Status Register = ,SR 111 199
Condition Code Register = .CCR 111 190

Radie fhaek

132




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

ADD
ADD binary

This instruction's general operation is:
ADD[1] destination, source

which adds the source to the destination. The result is
stored in the destination.

The Assembler-16 can interpret the binary ADD four different
ways. From the operands used, it determines which
instruction is to be executed.

The Assembler-16 chooses which operation to use according to
the following guidelines:

ADD quick if the source is immediate
(indicated by the # sign) and less
than or equal to 8.

ADD address if the destination is an address
register and the source is other
than immediate.

ADD immediate if the source is immediate and
greater than 8 (more than 3 bits).

ADD data register for any other operations performed
by the ADD instruction. A data
register is always one of the
operands.

Radio fhaek

133




ASSEMBLER-16 INSTRUCTIONS

TRS-80 ¢

ADD
ADD quick/ ADD immediate

ADD[1] .Dd, #expl[.W or .L] Operand length(l): B W L
-@Ad, #expl.W or .L]
@Ad+, #expl[.W or .L]
/expl[ .W or .L}, #exp2[.W or .L]
[expl]@Ax[(Ri)], #exp2[.W or .L]
.Ad, #expl[.W or .L] (Quick only (1)=W L only)

Condition Codes:

X N 72 Vv C
[T * *x % * %

T

- Set if carry occurred, cleared otherwise (same as
carry(C)).

- Set if result is negative, cleared otherwise.

Set if result is zero, cleared otherwise.

- Set if overflow generated, cleared otherwise.

- Set if carry occurred, cleared otherwise.

Q<N 2 b
1

Condition codes are not affected if an addition to an
address register is made.
Examples:
If DF is H'8P2A, then
ADDW .Dg,#H' 70090
changes the contents of D@ to H'Fg2A
If DY contains H'@@2A, then
ADDW .DF, #4

Changes the contents of DJ to H'@@2E.

Instruction Fields for ADD quick

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 @
1 @ 1 [/] 1 | data | # [size] mode | reg. |

Radio fhaek

134




ASSEMBLER-16 ° INSTRUCTIONS
TRS-80

The data field contains bit data, with values 1-8.
(#P1-111 = 1-7 decimal @P@F = 8 decimal)

The size field contains the size of the operation.
If the size field contains @f it is a byte operation.
If the size field contains g1 it is a word operation.
If the size field contains 1§ it is a long word
operation.

The mode and register fields contain the address mode
of the destination operand. Address register direct

addressing is not permitted when the size of the instruction

is byte length. 1If the size is word length and the
destination is an address register, the source is sign
extended to 32-bits.

Instruction Fields for ADD immediate

According to the size of the operation, the number of
extensions for the immediate data vary (see data fields).

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
| # g B B @F 1 1 @ [size] mode | reg. |

+

[ | byte data (8 bits) |
or
| word data (16 bits) I
or

long word (32 bits including previous word)

The size field contains the size of the operation.
If the size field contains @@ it is a byte operation.
If the size field contains @1 it is a word operation.
If the size field contains 1f it is a long word
operation.

The mode and register fields contain the address mode
of destination operand.

The data field contains the data immediately following
the instruction:

Radio fhaek

135




ASSEMBLER-16 . INSTRUCTIONS
TRS-80

If the size field contains @fF, then the data is in the
low order byte of the immediate word (8 bits).

If the size field contains fl1, then the data is in the
entire immediate word (16 bits).

If the size field contains 1@, then the data is in the
next two immediate words (32 bits).

Radie fhaek

136




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

ADD
ADD address register

ADD[1] .Ad, .As Operand Length(l):W,L
.Ad, .Ds
.Ad, -@As
.Ad, @As+
.Ad, /expl[.W or .L]
.Ad, [expleAyl[(Ri)]
.Ad, exp[@PC[(Ri)]]
.Ad, #expl[.W or .L] (Add immediate only)

Adds the source to the destination address register.

Example:
If A@ contains H'6@@@ and Al contains H'@@P1l@, then
ADDW JAg,.Al

changes the contents of Af to H'6#1d.

Condition Codes:

All of the flags are unaffected.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 g
| 1 1 [/} 1 | register| size | mode | reg. |

The register field contains any address register; always
the destination operand.

The size field contains the size of the operand.

If the size field contains @@1 it is a word operation.
The source operand is sign-extended (See EXT) to fill
32 bits of the address register.

Radio fhaek

137




ASSEMBLER-16 INSTRUCTIONS

TRS-80° —
If the size field contains 111 it is a long word
operation.
The mode and register fields contain the address mode
of the source operand.
N

Radio fhaek

138




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

ADD
ADD data register

Operand length(l):B,W,L

ADD[1] .Dd, .Ds

.bd, —-€As

.Dd, €As+

.Dd, /exp[.W or .L]

.Dd, [expl@Ay[(Ri)]

.Dd, expl[@PCI[(Ri)]]

.Dd, .As (Word and long word length only)

~-Q@Ad, .Ds

@Ad+, .Ds

/expl.W or .L],.Ds

[expl@Ax[(Ri)],.Ds

A data register is always one of the operands.

Example:
If D@ contains H'@143 and D1 contains H'@@@7, then
ADDW .D@g,.D1

changes the contents of DF to H'@1l4A.

Condition Codes:

X N 2 Vv C
l * * * * *

X - Set if carry occurred, cleared otherwise(same as
carry(C)).

N - Set if the result is negative, cleared otherwise.

7 - Set if the result is zero, cleared otherwise.

V - Set if overflow is generated, cleared otherwise.

C - Set if carry occurred, cleared otherwise.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 p#

[ 1 1 [} 1 | register| size/op] mode | reg. |

Radio fhaek

139




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

The register field contains the data register.

The size/op field contains the size of the operation and
the destination of the result.

Byte Word Long Word Destination
pog [f7 g1g data register
199 191 119 second operand

The mode and register fields contain the location of
the second operand.

If the second operand is the source operand and its
size is one byte, the address register direct
addressing mode is not permitted.

Radio fhaek

149




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °
ADDC
ADD binary with Carry
ADDC[1] .Dd,.Ds Operand-length (1): B,W,L
-@Ad, -@As

Adds the source and carry bit at the destination. The
result is stored in the destination.

Example:

If DF contains H'@5 and D1 contains H'@6, and the extend bit
of the status register is set, then

ADDCB .Dg,.D1

changes the contents of DF to H'f@C.

Condition Codes:

X N 2 Vv C
L * * * * *

[

- Set if carry is generated, cleared otherwise.

- Set if the result is negative, cleared otherwise.
Cleared if the result is nonzero, unchanged otherwise.
~ Set if overflow is generated, cleared otherwise.

- Set if carry is generated, cleared otherwise.

O<<NZ K
t

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 4@
[ 1 1 B 1] reg(d) | 1 [size] g] f]r/m]| reg(s)]|

The register(d) field contains the destination register.

If the R/M field is zero, register(d) is the data
register.

If the R/M field is one, register(d) is the address
register in the predecrement addressing mode.

If the size field contains @#l1 it is a word operation.
If the size field contains 14 it is a long operation.

Radio fhaek

141




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °©

The R/M field contains the operand addressing mode.
If the R/M field is @, the operation is from data

register to data register.
If the R/M field is 1, the operation is from memory to

memory.

The register(s) field contains the source register.
If the R/M field is #, register(s) is the data
register.
If the R/M field is 1, register(s) is the address
register in predecrement addressing mode.

Radio fhaek

142




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

ADDD
ADD Decimal(BCD) with extend

ADDD .D4, .Ds Operand length (l1): B
-@QAd, -@As

Adds the source and the extend bit to the destination and

then stores it in the destination. Binary coded decimal

arithmetic is used for the addition.

Example:

If DF contains 6 and D1 contains 7, and the extend bit of
the status register is set, then

ADDD .D@g,.D1

changes the contents of DF to 14.

Condition Codes:

X N Z2 v C
* U * U *

I I

- Set if a carry (BCD) is generated, cleared otherwise.

- Undefined.

Cleared if the result is non-zero. Unchanged otherwise.
- Undefined.

- Set if a carry (decimal) generated. Cleared otherwise.

QACNZ X
|

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
| 1 1 T ] AT regtd) [1 [F [F [F [BIR/M] reg(s)]

If the R/M field is #, the operation is from data register
to data register.

If the R/M field is 1, the operation is from memory to
memory.

The register(s) field contains the source register.

Radio fhaek

143




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

The register(d) field contains the destination register.

Radio fhaek

144




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

AND
logical AND

The AND instruction can be interpreted by the Assembler-16
two different ways. From the operands used, the
Assembler-16 determines which instruction to use.

AND[1] destination, source

which ANDs the source with the destination. The result is
stored in the destination.

The Assembler-16 chooses which operation to use according to
the following guidelines:

AND immediate if the source is immediate
(indicated by the # sign).

AND data for any other operations
performed by the AND
instruction. A data register
is always one of the operands.

Condition Codes: (Identical for both operations)

X N 2 VvV C
[ - > * ¢ ¢ |

X - Not affected

N - Set if the most significant bit of the result is set,
cleared otherwise.

- Set if the result is zero, cleared otherwise.

Always cleared.

- Always cleared.

N <N
|

Radio fhaek

145




ASSEMBLER-16 ® INSTRUCTIONS
TRS-80
AND
logical AND immediate
AND[1] .Dd, #expl[.W or .L] Operand length(l): B,W,L
-@Ax, #expl[.W or .L]
@Ax+, #exp[.W or .L]
/expl[.W or .L1, #exp2[.W or .L]
[expl]l@Ax[(Ri)], #exp2[.W or .L]

.CCR, #exp[.W

Example:
If DF contains H'4F, then

ANDB .DF ,#H'Fg

or

.L] (1=W only)

changes the contents of DJ to H'4g.

Instruction Fields:

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 &
18 8 B F F§ F 1 g [size] mode | reg. |
+
T | byte data (8 bits) I

or
[ word (16 bits) I
or

long word (32 bits)

The size field contains the size of the operation.
If the size field contains @@ it is a byte operation.
If the size field contains @1 it is a word operation.
If the size field contains 1§ it is a long word

operation.

The register and mode fields contain the address mode

of the destination operand

The data field contains the data immediately following

the instruction:

Radio fhaek

146




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

If the size field contains @@, the data is in the low
order byte of the immediate word (8 bits).

If the size field contains @1, the data is the entire
immediate word (16 bits).

If the size field contains 1@, the data is the next two
immediate words (32 bits).

Radio fhaek

147




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

AND
logical AND data

AND[1] .Dd4d, .Ds Operand length(l):B,W,L

.Dd, -@Ay

.Dd, @Ay+

.Dd, /expl.W or .L]

.Dd, [expl@Ayl (Ri)]

.Dd, expl[@PC[(Ri)]]

-@An, .Ds

@Ax+, .Ds

/expl.W or .L],.Ds

[expl@Ax[(Ri)],.Ds

Example:
If Df contains H'FF@@ FF@P and Dl contains H'@PFF GFFF, then

ANDL .DO,.D1

changes the contents of DJ to H'QPGPP Fodd.

Instruction Fields:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 @
[ 1 1 [/} # | register | size/op] mode | reg. |

The register field contains the data register.

The size/op field contains the size of the operation and
the destination of the result:

Byte word Long Word Destination
[ Jip) gg1 g1p data register
189 191 119 second operand

The register and mode fields contain the location of
the second operand.

Radio fhaek

148




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

Bcc
Branch on condition
Bccl[l] exp(@PC] Operand length(l): B,W
Tests a condition. If the condition is true, sets the
program counter (PC) to the value of the operand. If the
condition is false, program execution continues at the next
instruction.

Example:

If the zero flag of the status register is set, and LOOP is
a statement label somewhere in the program, then,

BE LOOP

transfers control of the program to the instruction at LOOP.

Condition Codes:

X N 72 VvV C

[- - - [

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
[} 1 1 g | condition | 8 bit displacement
16 bit displacement (if 8 bit dislacement is f)

The 8 bit displacement field contains the two's

complement integer which contains the relative distance (in
bytes) between the current instruction address, plus 2, and
the referenced instruction.

The 16 bit displacement field allows larger
displacement than 8-bits. It is used if the 8-bit field is
equal to zero.

The condition field is one of the following fourteen
conditions:

Radio fhaek

149




ASSEMBLER-16

o INSTRUCTIONS
TRS-80

g111
g11g
g1g1
#1490
1918
111
1991
19090
1119
1109
1101
1111
g01p
Bo11
9191
B1pg

BE
BNE
BC
BNC
BP
BN
BV
BNV
BGT
BGE
BLT
BLE
BH
BNH
BLO
BHS

equal

not equal

carry

no carry

positive

negative

overflow

no overflow
greater than
greater than or equal
less than

less than or equal
higher than

not higher than
low

high, same

Radio fhaek

159




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

BR
BRanch control addressing

BR /exp Operand length(l): unsized
[exp]l@AX[(Ri)]
exp[ @PC(Ri) ]

The program execution branches to the address given by the
operand.

Example:
If LOOP is a statement label somewhere in the program, then
BR LOOP

transfers control of the program to the instruction at LOOP.

Condition Codes:

X N Z VvV C

[ -7

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 g
|1 2 1 [/ [/] 1 1 1 g 1 1] mode | reg. |

The register and mode fields contain the address of
the next instruction.

Radio fhaek

151




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

BRK
BReak

BRK #exp Operand length(l): Unsized

Three operations are performed by this instruction:

1, The program counter is pushed into the supervisor
stack.

2. The status register is pushed into the supervisor
stack.

3. The vector number (#exp) is loaded into the program
counter.

This instruction initiates exception processing. The vector
number is generated to reference the Break exception vector
which is specified by the four low order bits of the
instruction. Sixteen vectors are available.

Example:

If a supervisory call (SVC) has been set up, then

BRK 9

causes execution of that SvVC.

Condition Codes:

X N Z V C

[ - - ]

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
| 2 1 g # 1 1 1 F g 1 § B ] #exp |

The #exp field contains the number (break vector) to be
loaded into the program counter.

Radie fhaek

152




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

BRKV
BReaK on oVerflow

BRKV Operand length(l): Unsized

Initiates exception processing if the overflow condition is
on (overflow(V) = 1). Generates the vector number to
reference the overflow exception vector as follows:

Program Counter (PC) --> Stack

Status Register (SR) --> Stack

Overflow Vector --> Program Counter (PC)
No operation is performed if the overflow is off. Execution
continues with the next instruction. (Note: You must set

the overflow vector using the SETTRP SVC before executing

the exception.)

Example:

If the overflow bit of the status register is set, then
BRKV

initiates overflow exception processing.

Condition Codes:

X N Z2Z VvV C

-]

None of the flags are affected.

Instruction Fields:

|

w0
= 00
= ~I
=

-

s
=) W
oo
E‘&

Radio fhaek

153




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

CALL
CALL general

CALL /exp Operand length(l): Unsized
[expl@Ax[ (Ri)]
exp[@PC(Ri)]

Example:

If SUBl1 is the label of a subroutine somewhere in the
program, then

CALL SUB1

transfers control of the program to the instruction at SUBI.

Condition Codes:

X N Z Vv C

- - - I

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 J]
1 8 1 [/} [/} 1 1 1 g 1 g ] mode | reg. |

The register and mode fields contain the address of
the next instruction.

Radio fhaek

154




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

CHK
CHecK against bounds

CHK .Du, .Dn Operand Sizes : W
-@Au, .Dn
@Au+, .Dn
/expl[ .W or .L], .Dn
[exp] @Ax[(Ri)], .Dn
exp[@PC[(Ri)]], .Dn
$expl[.W or .L], Dn

Examines the content of the low order in the data register
(Dn) and compares it to the upper bound operand. The upper
bound is a two's complement integer. Exception processing
is initiated if the data register is less than zero or
greater than the upper bound operand. Generates the vector
number to reference the CHK instruction exception vector.
(Note: You must set the CHK vector with the SETTRP SVC
before executing this statement.)

Example:
If DP contains H'@l@P and D1 contains H'@1g1, then
CHK .D@,.D1

initiates CHK exception processing.

Condition Codes:

X N Z V C
| - % U u U

X - Not affected.

N - Set if Dn is less than zero; cleared if Dn is greater
than the; undefined otherwise.

7 - Undefined.

V - Undefined.

C - Undefined.

Instruction Fields:

Radio fhaek

155




ASSEMBLER-16 INSTRUCTIONS

TRS-80 ©

15 14 13 12 11 18 9

8 5 4 3 2 1 g
18 1 g F ] data req.]1

6
g | mode [ reg. |
(upper bound)

7
1

The data register contains the data register whose
content is checked.

The register and mode fields contain the upper bound
operand word.

Radio fhaek

156




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

CLR
CLeaR an operand

CLR[1] .Dn Operand length(l): B,W,L
—@An
QAn+
/expl.W or .Ll
[expl@An[(Ri)]

Clears the operand to all zero bits.

Example:
If D@ contains H'@@@F1l, then
CLRW .Dg

changes the contents of Dg to H'PZPPM.

Condition Codes:

X N vV C

| - 8 g 98]
Not affected.
Always cleared.
Always set.

Always cleared.
Always cleared.

N

(@IS~
i nn

Instruction Fields:

1 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
| g 1 [/} [/] [/] g 1 @ [size] mode | reg. |

The register and mode fields contain the operand
addressing mode.

The size field contains the size of the operation:

If the size field contains @@ it is a byte operation.
If the size field contains @1 it is a word operation.
If the size field contains 1@ it is a long word

Radio fhaek

157




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

operation.
CMP
CoMPare

This instruction's general operation is:
CMP[1] Destination, Source

where the source is subtracted from the destination and the
condition codes (CCR) are set according to the results. The
values of the operands are not changed.

The compare instruction is interpreted by the Assembler-16
as four different instructions. The Assembler-16 determines
which is to be executed by the operands.

The Assembler-16 chooses which operation to use according to
the following guidelines:

CMP immediate if the source is immediate
(indicated by the # sign).

CMP memory if both operands are addressed
with the postincrement
addressing mode.

CMP address for any other compare
operation where
the destination is addressed
using the address register
direct mode.

CMP data for any other compare
operation where the
destination is addressed using
the data register direct mode.

Condition Codes: are identical for all CMP operations.

X N Z V C

l - % % * % r

X - Not affected.
N - Set if the result is negative, cleared otherwise.
Z - Set if th eresult is zero, cleared otherwise.

Radio fhaek

158




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

V - Set if overflow is generated, cleared otherwise.
C - Set if borrow is generated, cleared otherwise.

Radio fhaek

159




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °
CMP
CoMPare immediate
CMP[1] .Dd, #expl[.W or .L] Operand length(l): B,W,L

-@aAx, #expl[.W or .L]
@Ax+, #expl[.W or .L]
/expll.W or .L1, #exp2[.W or .L]
[expll@Ax[(Ri)], #exp2[.W or .L]
Example
If DF contains H'@P1@, then
CMPW .DJ, #H'1Q

sets the zero bit of the status register.

Instruction Fields:

15 14 13 12 11 1§ 9 8 7 6 5 4 3 2 1 g
19 @0 7 F171 1 g g [size] mode | reg. |

+
T | byte data (8 bits) |
or
1l word data (16 bits) 1
or

long word data (32 bits, including previous word)

The size field contains the size of the operation.
If the size field is @@, it is a byte operation.
If the size field is §1, it is a word operation.
If the size field is 1§, it is a long word operation.

The register and mode fields contain the address mode
of the destination operand.

The data field contains the data immediately following

the operation word.
If the size field is PP, the data is low order byte of
the immediate word (8 bits).
If the size field is @1, the data is the entire

Radie fhaek

169




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

immediate word (16 bits).
If the size field is 18, the data is the next two
immediate words (32 bits).

Radie fhaek

161




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

CMP
CoMPare memory

CMP[1l] eAd+, @eAs+ Operand length(l): B,W,L

Example:

If AP points to memory address H'4p@@, which contains H'@#,
and Al points to address H'4@@4, which contains H'@5 then

CMPB @AQ+,QAL+
sets the negative and carry bits of the status register and
increments A@ and Al by 1.
Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 J]
[1 [/] 1 1l | reg.(d) [ 1 [size] f @ 1 Jreg.(s)]|

The register(d) field contains the destination register.

The register(s) field contains the source register.

The size field contains the size of the operation.
If the size field is @@, it is a byte operation.
If the size field is #1, it is a word operation.
If the size field is 1§, it is a long word operation.

Radie Sfhaek

162




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

CMP
CoMPare address

CMP[1l] .Ad, .As Operand length(l): W, L

.Ad, .Ds

.Ad, -@as

.Ad, @As+

.Ad, /expl[.W or .L]

.Ad, [exp]@Ayl[ (Ri)]

.Ad, exp[@PCI[(Ri)]]

.Ad, #exp

Example:
If A@ contains H'@@@F FPPFP and Al contains H'@@PF PPPFPF, then
CMPL .Af, . Al

clears the negative bit in the status register.

Instruction Fields:

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 2
11 g 1 1 ] reg. | size | mode | reg. |

The register field contains the destination address
register.

The size field contains the the size of the operation
If the size field is @@1, it is a word operation.
The source is sign extended to a long operand and the
operation is performed internally using all 32 bits.
If the size field is #11, it is a long word operation.

The register and mode fields contain the source
address mode.

Radio fhaek

163




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

CMP
CoMPare data

CMP Operand Length(l): B,W,L
CMP([1] .Dd, .Ds

. Dd' —@AS

.Dd, @As+

.Dd, /exp [.W or .L]
.Dd, [expl@Ayl[(Ri)]
.Dd, exp[@PC[(Ri)]]
.Dd, As ([l]=W, L only)

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
11 [/} 1 1 | req. | size | mode | reg. |

The register field contains the destination data
register.

The size field contains the size of the operation.
If the size field is @g@@P, it is a byte operation.
If the size field is @g@1, it is a word operation.
If the size field is @14, it is a long word operation.

The register and mode fields contain the source
operand addressing mode.

Radio Sfhaek

164




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

DBcc
test condition Decrement and Branch

DBcc .Dx, expl[@PC] Operand length(l): W

A condition is tested. If the condition is determined to be
true, no operation is performed. If the condition is false
(not cc), the low order word (16 bits) of the data register
is decremented. When false and the result is -1, then no
other operation is performed (the program goes to the
next instruction); if the result is anything besides -1,
then the program counter is set to the value of the second
operand (PC plus exp, where PC is the address of exp, the
displacement word).

Examples:

If D@ contains H'@2, the zero bit in the status register is
set, and LOOP is a statement label, then

DBNE .Df,LooP

changes the contents of DF to H'Pl, and then transfers
control of the program to the instruction at LOOP.

If D@ contains H'@Fl, the zero bit in the status register is
clear, and LOOP is a statement label, then
DBNE .D@ ,LOOP

transfers control to the next sequential instruction (D@ is
not decremented).

If D@ contains H'@@, the zero bit in the status register is
set, and LOOP is a statement label, then

DBNE .D@ ,LOOP

transfers control to the next sequential instruction (Df 1is
decremented to -1).

Condition Codes:

Radio fhaek

165




ASSEMBLER-16 INSTRUCTIONS

TRS-80 ° —~

X N Z V C

[ - -7

None of the flags are affected.

Instruction Fields:

This instruction requires one word of extension for
displacement [exp].

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
[/} 1 [/] 1 | condition [ 1 1 g g 1 | req.
displacement

The condition field contains one of 16 conditions.

The cc mnemonic can be one of the following:

Op Code - Mnemonic - Description

20040 - DBR - always N
#2111 - DBE - equal B
g11g - DBNE - not equal

#4181 - DBC - carry

2189 - DBNC - no carry

1919 - DBP - positive

1411 - DBN - negative

1491 - DBV - overflow

1899 - DBNV - no overflow

1119 - DBGT - greater than

1199 - DBGE - greater than or equal

1181 - DBLT - less than

1111 - DBLE - less than or equal

pgLp - DBH - higher than

2911 - DBNH - not higher than

2ag1 - DEC - never

2101 - DBLO - low

g1p9 ~ DBHS - high, or same

The register field contains the data register which is
used as a counter.

The displacement field contains the 16 bit displacement
(exp) and specifies the distance of the branch.

Radio fhaek

166




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

DIV
DIVide signed

DIV .Dd, -@As Operand length(l): W
.Dd, @As+
.Dd, /exp [.W or .L]
.Dd, [expl@Ay[(Ri)]
.Dd, exp[@PC[(Ri)]1]
.Dd, #expl.W or .L]
.Dd, .Ds

Divides the destination (always a data register) by the
source and the result is stored in the destination. The
destination is a long word (32 bits) and the source is a
word (16 bits). The division is performed using signed
arithmetic. The result is a long word (32 bits) where:

1. The quotient is in the lower word.

2. The remainder is in the upper word.

3. The sign of the remainder is the same as the

dividend unless the remainder is zero.

Special Conditions:

Division by zero causes a trap.

Overflow may be detected and set before completion of the
operation.

If overflow occurs, the flag is set but the operands are
unaffected.

Example:
If D@ contains H'@Pl4 and D1 contains -6 (H'FFFA), then
DIV .Dg,.D1

changes the contents of D@ to H'@P@F2 FFFD (-3 with a
remainder of 2).

Radio fhaek

167




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

Condition Codes:

X N Z v C
[ = % % % =%

r

X - Not affected.

N - Set if the quotient is negative, cleared otherwise,
undefined if an overflow.

Z - Set if the quotient is zero, cleared otherwise,
undefined if overflow.

V - Set if overflow detected, cleared otherwise.

C - Always cleared.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 g

11 g g g reg. [ 1 1 1 ] mode [ reqg. |

The register field contains the data (destination)
register.

The register and mode fields contain the source
address mode.

Radio fhaek

168




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

DIVU
DIVide Unsigned

DIVU .Dd, -@As Operand length(l): W

.Dd, @As+

.Dd, /exp [.W or .LI]

.Dd, [expl@Ayl (Ri)]

.Dd, expl[@PCI[(Ri)]]

.Dd, #expl.W or .L]

.Dd, .Ds
Divides the destination (always a data register) by the
source and stores the result in the destination. The
destination is a long word (32 bits) and the source is a
word (16 bits). The division is performed using unsigned
arithmetic. The result is a long word (32 bits) where:

1. The quotient is in the lower word.

2. The remainder is in the upper word.

Special Conditions:
Division by zero causes a trap.

Overflow may be detected and set before completion of the
operation.

If overflow occurs, the flag is set, but the operands are
unaffected.
Example:
If D@ contains H'@@14 and D1 contains H'@@FF4, then
DIVU .D@,.D1

changes the content of D@ toc H'@PFPP PPGS5.

Condition Codes:

X N Z VvV C(C
r - * * * *

[

Radio fhaek

169




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °©

X - Not affected.

N - Set if the most significant bit of the quotient is set,
cleared otherwise, undefined if an overflow.

Z - Set if the quotient is zero, cleared otherwise,
undefined if an overflow.

V - Set if an overflow is detected, cleared otherwise.

C - Always cleared.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 J7]
[ 1 g g g] reg. | # 1 1] mode | reqg. |

The register fields contain the data (destination)
register.

The register and mode fields contain the source
address mode.

Radio fhaek

179




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

EXT
sign EXTended
EXT[1] .Dn Operand length(l): W, L

Sign-extends a byte to a word (bit 7 copied in bits 15-8),
or a word to long word (bit 15 copied in bits 31-16).

The operand is always a data register.

Example:
If DF contains H'@@@@ FPPF, then
EXTL .Dg

changes the contents of D@ to H'FFFF F@gF.

Condition Code:

X N 2 VvV C
| - * * 8 9 |

- Not affected.

- Set if the result is negative, cleared otherwise.
Set if the result is zero, cleared otherwise.

- Always cleared.

- Always cleared.

A< NZ X
|

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 8
[ # 1 @ @6 1 § P size | 8 B g ] reg. |

The size field contains the size of the sign-extension.
If the size field is @1f, the sign extension is low
order byte to word.

If the size field is @11, the sign extension is low
order word to long word.

The register field contains the data register number
(B-7) to be sign-extended.

Radio fhaek

171




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

LD
LoaD data

Can be interpretted by the Assembler-16 as four different
instructions. By the operands used, the Assembler-16
chooses which instruction to initiate.

LD [1] destination, source

where the destination is a register and the second operand
is the data located at source.

Radio fhaek

172




ASSEMBLER-16 ® INSTRUCTIONS
TRS-80

LD
LoaD condition codes

LD[1] .CCR, #expl.W] Operand length(l): W
.CCR, —-@As
.CCR, @As+
.CCR, /expl.W]
.CCR, [expleAs[(Ri)]
.CCR, expl[@PC[(Ri)]]
.CCR, .Ds

Loads the content of the source in the condition codes. The
source is a word but only the low order 8 bits are loaded.
Example:

If the condition codes of the status register are all set,
then

LDW .CCR,#H'JgE
changes the codes so that the extend and carry bits are
clear, and the negative, zero, and overflow bits are set.
Condition Codes:

X N 72 VvV C
[ * * * * *

l

Set all flags according to the source operand.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
[# 1 § # g 1 g # 1 1] mode ] reg. |

The register and mode fields contain the addressing
modes of the source.

Radio fhaek

173




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

LD
LoaD data register

LD[1] .Dd, -@As Operand length(l): B, W, L
.Dd, @As+
.Dd, /expl[.W or .L]
.Dd, [expl@As[(Ri)]
.Dd, expl@PC[(Ri)]]
.Dd, #expl.W or .L]
.Dd, .Ds
.Dd, .As (1=W, L only)

Loads the contents of the source into a destination data
register.
Example:

If A@ points to memory address H'500@, which contains H'LF,
and DJ contains H'@@@g@ PPPP, then

LDB .DJ,eAg+
changes the contents of DF to H'Pggg #P1F, and increments Ag
by 1.

Condition Codes:

X N Z VvV ¢C
| - * * g @ ]
Unaffected.

Set if the result is negative, cleared otherwise.
Set if the result is zero, cleared otherwise.
Always cleared.

Always cleared.

NN Z X
I nwuu

Instruction Fields:

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 g
destination source
g B | size reqg. |  mode mode | reg.

The size field contains the size loaded.

Radio fhaek

174




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

If the size field contains @1 the size loaded is byte.
If the size field contains 11 the size loaded is word.
If the size field contains 1§ the size loaded is long.

The destination fields determine the destination data
register. Note that the register mode is reverse normal
order.

The source fields determine the source addressing mode.

Radio fhaek

175




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

LD
LoaD address register

LD[1] .Ad, #expIW or .L] Operand length(l): W, L

.Ad, -@As

.Ad, @As+

.Ad, /expl.W or .L]

.Ad, [expl@As[(Ri)]

.Ad, expl[@PC[(Ri)]1]

.Ad, .As

.Ad, .Ds

Loads the contents of the source to an address register.

Example:
If Af contains H'@ggg 2088, then
LDW A, #H' FFEQ
changes the contents of Af to H'FFFF FF@@ (the source is
sign extended).
Condition Codes:

X N 72 v cC

7

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 14 9 8 7 6 5 4 3 2 1 g
destination source
g g | size reg. | 991 mode | regqg.

The size field contains the size of the operand.
If the size field contains 11, it is a word operation.
The source is sign extended to a long operand and all
32 bits are loaded into the address register.
If the size field contains 1f, it is a long operation.

Radio fhaek

176




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

The destination field contains the destination address
register.

The source field contains the addressing mode of the
source,

Radio fhaek

177




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

LDA
LoaD Address

LDA .Ad, /expl[.W or .L] Operand length(l): L

.Ad, [expl@As[(Ri)]
.Ad, expl[@PCI[(Ri)]]

Loads the specified address register with the address of the

source. All 32 bits of the address register are affected.

Example:

If A@ contains H'PP@F P9PF, Al contains H'60@@ and A2
contains H'@@P@ PP25, then

I.DA .AQ,H'14@AL1(A2)

Changes the contents of Af to H'PPPI6gP35.

Condition Codes:

X N Z VvV C
[ - - — ]

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 g
| @ 1 [/] g ] reg. |1 1 1] mode | reg. |

The register field determine the address register to
load.

The register and mode fields contain the address to be
loaded.

Radio fhaek

178

e




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

LDM
LoaD Multiple

LDM[1] Rlist, @As+ Operand length(l): W, L
Rlist, /exp
Rlist, [explAs([Ri)]
Rlist, expl[@PC[(Ri)]]

where R list is a set of registers (destination), separated
by commas (RX, Ry...etc).

The registers in Rlist are loaded from consecutive memory
locations beginning with the location specified by the
source operand. The order of loading register is from D¢
to D7, then from Af to A7. Note that this order is’
independent of the order given in Rlist (.Al,.D3, D2 would
give the same result as .D2, .D3, .Al.). If a word is
stipulated in operand length (1), then the low order word of
each register is loaded, and the word is sign extended into
the upper word.

If the source is the postincrement mode, the incremented
address register is updated to contain the address of the
last word loaded plus two.

Example:

If the memory addresses H'6@g@g@-6493 contain H'AA AA BB BB,
and Dg and D1 both contain H'A@@@ P@PFPY, then

LDMW .Dg,.D1,/H'60gg

changes the contents of D to H'@@@@F AAAA, and D1 to H'PP@P
BBBB.

Condition Codes:

X N Z2 VvV C

[- - - - -7

None of the flags are affected.

Instruction Fields:

Radio fhaek

179




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

A word extension is added to the operation word for this
instruction (Rlist).

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 2
[/} 1 J/] [/] 1 1 § g 1 |sz] mode | regq.
Rlist

The size field contains the size of the operation.
If the size field contains §, it is word.
If the size field contains 1, it is long.

The register and mode fields contain the source
addressing mode.g

The Rlist field contains the registers in the Rlist as
follows:

15 14 13 12 11 14 9 8 7 6 5 4 3 2 1 @
|[A7 A6 A5 A4 A3 A2 Al Af D7 D6 D5 D4 D3 D2 D1 D@|

This is where the bits corresponding to the registers
included in the Rlist are set.

Radio fhaek

189

»




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

LDP
LoaD Peripheral data
LDP[1] .Dd, [expl@As Operand length(l): W, L
Loads the data into the data register (destination) from
memory (source). The data in memory is formatted as one
byte per word (the high order byte for even addresses and
the low order byte for odd addresses).

Example:

If A contains H'60@f, addresses H'6g@@-6803 contain H'FA 23
1B 34, and D@ contains H'@@g@g g@PP, then

LDPW .D@,engd

changes the contents of D@ to H'@@@FP FALB.

Radie fhaek

181




ASSEMBLER-16 INSTRUCTIONS

TRS-80°
OPERAND LENGTH: W
MEMORY SOURCE ADDRESS TO DATA REGISTER

A B EVEN --> ] | [ A T ¢ ]

C D

E F

G H oODD --> | [ [ B [ D ]
Example:

If Af contains H'60@@, addresses H'600¥ - 6887 contain H'FA
23 1B 38 25 26 27 28, and D@ contains H'@@g@Q @#PPd, then

" LDPL .D@,Qag

changes Df to H'FAlB 25 27

OPERAND LENGTH: L

MEMORY. SOURCE ADDRESS TO DATA REGISTER
A B EVEN --> | A |J ¢ | E | G T
C D
E F
G H obb --> | B | D | 7 | H T

Condition Codes:

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 14 9 8 7 6 5 4 3 2 1 @
g g g g | data reg.[l [fF [sz|[@ P 1Jadd regq.
~ [exp]

The data register field contains the destination of
the data register.

Radio fhaek

182




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

The size field contains the size of the operation.
If the size field contains @, the operation is word.
If the size field contains 1, the operation is long.

The address register field contains the source address
register used in indirect mode (plus optional displacement).

The [exp] field contains the placement used in
calculating the operand address.

Radio fhaek

183




ASSEMBLER-16 . INSTRUCTIONS
TRS-80 ~~

LINK
LINK and allocate

LINK .An, #exp Operand length(l): Unsized
This is a three-step instruction:

1. The address register specified (.An) is pushed
onto the stack (.An occupied two words -- 32
bits).

2. Then, the address register (.An) is loaded with
the updated stack pointer.

3. The sign-extended displacement (two's complement
integer) is added to the stack pointer (#exp,
occupies a 16-bit extension of the operation
word).

Example:
N
If A contains H'@P@1ll 4@P@P, and the SP contains H'd@g@gg 3806, .
then
LINK Af, #H'199
changes the contents of Af to H'@@PP 3882, the SP to H'0@89
3082, and memory addresses H'30@2-3805 to H'PF 11 49 @g4.
Condition Codes:
X N 72 v ¢C
- - -
None of the flags are affected.
Instruction Fields:
15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 g
g1 g @F T 1T 1 g f 1 g 1 B8] reg.
#exp
N
®
Radio fhaek

184




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

The register field contains the address register
specified in the operand.

The #exp field determines the two's complement integer
which is to be added to the stack pointer.

Radie /haek

185




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

MOV
MOve

This instruction can be interpreted by the instruction four
different ways. The operands used determine which
instruction the Assembler-16 chooses.

General Operation:

MOV[1] destination, source

where the operands are either both memory or both registers.
The contents of the source is moved to the destination.

Radio fhaek

186




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

MOV
MOVe address register

MOV[1l] .Ad, .As Operand length(l): W, L
.Ad, .Ds

The destination is an address register.

Example:

If Al contains H'FF@@, and A@ contains H'P@g@gP F49F, then
MOVW.Afd, .Al

changes the contents of Af to H'FFFF FF@@ (the source is

sign extended).

Condition Codes:

X N Z Vv C

[—

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1§ 9 8 7 6 5 4 3 2 1 g
destination source
g g size | register | § g 1 mode | reg.

The size field contains the size of the operand.
If the size field contains 11, it is a word operation.
The source is sign extended to a long operand and all
32 bits are loaded into the address register.
If the size field contains 1f, it is a long operation.

The destination field determines the destination address
register.

The source field determines the addressing mode of the
source operand.

Radio fhaek

187




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

MOV
MOVe to condition codes
MOV([1] .CCR, .Ds Operand length(l): W
Loads the content of the source into the condition codes.
Only the low order 8 bits of the source are loaded. The
source 1is a word.

Example:

If D contains H'@Pll, and the condition codes are all
clear, then

MOV .CCR, .Dg

sets the extend and carry bits of the status register, and
clears the negative, overflow, and zero bits.

Condition Codes:

X N Z VvV C
IEEEEERE

[

All condition codes are set according to the source operand.

Instruction Fields:

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 @
|8 1 #4 @Fg @# 1 g @F 1 1] mode | reqg. |

The register and mode fields contain the addressing
mode of the source.

Radio fhaek

188




ASSEMBLER-16 o INSTRUCTIONS
TRS-80 :

MoV
MOVe general

MOVI[1] .Dd, .Ds Operand length(l): B, W, L
.Dd, .As (1 = W or L only)
- @Ax r = @AY
@Ax+, @Ay+
—@AX ’ @Ay+
—@Axl /exP
-@Ax, [expl@Ayl[(Ri)]
-@Ax, expl[@PCI[(Ri)]]
@Ax+, -@Ay
@Ax+, /exp
QAx+, [expl@Ayl[ (Ri)]
@Ax+, expl@PCI[(Ri)]]
/exp, —@AXx
/exp, @Ax+
/expl, /exp2
/expl, [exp2]@Ax[(Ri)]
/expl, exp2[@PCI[(Ri)]]
[expl@Ax[(Ri)], -@Ay
[expleAx[(Ri)], @Ay+
[explleAx[(Ri)], /exp2
[expll@ax[(Ri)], [exp2]@Ayl[(Ri)]
[expl]l@Aax[(Ri)]l, exp2[@PCI[(Ri)]]
-@Ax, #exp
@Ax+, #exp
/expl, #exp2
[expl]@Ax[(Ri)], #exp2

Moves the contents of the source to the destination (memory
to memory, or register to data register.

Example
If DY contains H'1l@g@P and D1l contains H'FF, then
MOVB .Dg,.D1

changes the contents of D@ to H'1lgFF

Condition Codes:

Radio fhaek

189




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °
X N Z2 VvV (C
| - * * 73 g1
Unaffected.

Set if result is negative, cleared otherwise.
Set if result is zero, cleared otherwise.
Always cleared.

Always cleared.

O<<NZF X
LI O | A I 1

Instruction Fields:

Radie fhaek

1949




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
destination source
g g size | register | mode mode | reg.

The size field determines what size is moved.
If the size field is @1, it is byte.
If the size field is 11, it is word.
If the size field is 1@, it is long.

The destination fields contain the destination
addressing mode (note reg./mode is reverse normal order).

The source fields contain the source addressing mode.

Radio fhaek

191




ASSEMBLER-16 INSTRUCTIONS

®
TRS-80 —
MOV
MOV from SR
MOV[1l] .pd, .SR Operand length(l): W
Moves the contents of the status register to the data
register.
Example:
If the SR contains H'8715 and D@ contains H'@@@@, then
MOV .Df,.SR
changes the contents of D@ to H'8715.
Condition Codes:
X N Z v ¢C
- - - — ~
None of the flags are affected. \“
Instruction Fields:
15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 J/]
1 # 1 @ § F § F # 1 1] mode | reg. |
The register and mode fields contain the destination
data register.
N

Radie fhaek

192




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

MUL
MULtiply signed

MUL .Dd, -@As Operand length(l): W
.Dd, eAs+
.Dd, /exp [.W or .L]
.Dd, expleAyl(Ri)]
.Dd, expl[@PC[(Ri)]]
.Dd, #expl[.W or .L]
.Dd, .Ds

Multiplies the two signed word (16 bits) operands, producing
a 32-bit signed result in the destination (data register).
The register operands are taken from the low order word,
leaving the high order word unused. All 32 bits of the
product are saved in the destination.

Example:

If D@ contains H'@@F1l@ and D1l contains H'FFF5, then
MUL .Dg,.D1

changes the contents of DY to H'FFFF FF54.

Condition Codes:

X N 2 V C
[ - * * g P |

Not affected.

Set if the result is negative, cleared otherwise.
Set if the result is zero, cleared otherwise.
Always cleared.

Always cleared.

1 I

A<z X
i

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 g
| 1 g B P | register |1 1 1 | mode | reg. |

The register field contains the data register
(destination).

Radio fhaek

193




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

The register and mode fields contain the source
address mode.

Radie fhaek

194

7N




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

MULU
MULtiply Unsigned

MULU .Dd, -@As Operand length(l): W
.Dd, @As+
.Dd, /exp [.W or .L]
.Dd, [expl@Ayl[(Ri)]
.Dd, expl[@PCI[(Ri)]]
.Dd, #expl[.W or .L]
.Dd, .Ds

Multiplies two unsigned word (16 bits) operands, producing a
32-bit unsigned result in the destination (data register).
The register operands are taken from the low order word; the
high order word is unused. All 32 bits of the product are
saved in the destination.

Example:
If DF contains H'@@Fl@ and D1 contains H'@@@5, then

MULU .Dg, .D1

changes the contents of D@ to H'PP@GF g@F54.

Condition Codes:

X N 2 VvV C
[ - * * g P |

- Not affected.

Set if the most significant bit of the result is set,
cleared otherwise.

- Set if the result is zero, cleared otherwise.

Always cleared.

- Always cleared.

Z X
|

NN
t

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
11 1 g P | register[ § 1 1] mode [ reg. |

Radio fhaek

195




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

The register field contains the data register
(destination).

The register and mode fields contain the source
address mode.

Radio fhaek

196




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °
NEG
NEGate
NEG[1l] .Dd Operand length(l): B, W, L
-@Ad
@Ad+

/expl .W or .L]
[expl@Ax[ (Ri)]

Subtracts the operand addressed as the destination from
zero. The result is stored in the destination.

Example:
If D@ contains H'3A, then
NEGB .Df

changes the contents of D@ to H'C6.

Condition Codes:

X N Z VvV C
* %

| * * * r
X - Set the same as carry ((c) - if borrow generated),
cleared otherwise.
N - Set if the result is negative, cleared otherwise.
Z - Set if the result is zero, cleared otherwise.
V - Set if an overflow is generated, cleared otherwise.
C - Set if a borrow is generated, cleared otherwise.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
| 2 1 g g P 1 @# @ [size] mode | reg. |

The size field contains the size of the operation.
If the size field is @1, it is byte.
If the size field is @1, it is word.
If the size field is 18, it is long.

Radio Shaek

197




ASSEMBLER-16 . INSTRUCTIONS
TRS-80

The register and mode fields contain the destination
address mode.

Radio fhaek

198




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

NEGC
NEGate with carry

NEGC[1] .Dd Operand length(l): B, W, L

—-@Ad

@ad+

/expl.W or .L]

[expl@AX[ (Ri)]
Subtracts the operand addressed as the destination and the
carry bit from zero. The result is stored in the
destination.

Example:

If DF contains H'34 and the extend bit of the status
register is set, then

NEGCB .Dg

changes the contents of Df to H'CB.

Condition Codes:

X N 72 V C
] * * * * *

i

X - Set the same as carry ((c) - if borrow generated),
cleared otherwise.

- Set if the result is negative, cleared otherwise.

- Cleared if the result is nonzero, unchanged otherwise.

Set if an overflow is generated, cleared otherwise.

- Set if a borrow is generated, cleared otherwise.

< NZ
[

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
184 1 @ g B g @F @ [size] mode | reg. [

The size field contains the size of the operation.
If the size field is @@, it is byte.
If the size field is @1, it is word.

Radie fhaek

199




ASSEMBLER-16 INSTRUCTIONS

TRS-80 ©

If the size field is 18 it is long.

The register and mode fields contain the destination address
mode.

Radio fhaek

200




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

NEGD
NEGate Decimal (BCD) with extend

NEGD -@Ad Operand sizes: B
@Ad+
/exp
[expl@Ax[(Ri)]
.Dd

Subtracts the operand and the extend bit from zero. Binary
coded decimal arithmetic is used, storing the result in the
operand address. The ten's complement of the destination
is produced if the extend bit is clear, if the extend bit

is set the nine's complement of the destination is produced.
This is a byte only operation.

Example:

If DP contains 51 and the extend bit of the status register
is clear, then

NEGD .Dg

changes the contents of DF to 49.

Condition Codes:

X N Z Vv C(C
| x Uy * U * l

X - Set if borrow (BCD) occurred, cleared otherwise (same as

carry(c)).
N - Undefined.
7 - Cleared if the result is nonzero, unchanged otherwise.
V - Undefined
C - Set if borrow (BCD) occurred, cleared otherwise. (Same

as extend (X)).

Instruction Fields:

15 14 13 12 11 1
| 8 1 g $ 1

==
=0
| o
LIRS
= o

[ mode | reg. |

Radio fhaek

201




ASSEMBLER~-16 INSTRUCTIONS

TRS-80 °©

The register and mode fields contain the operand
destination (the address of the operand.)

Radio fhaek

202




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

NOP
No OPeration

NOP Operand length(l): Unsized
No operation occurs. The program counter is incremented by
two. Otherwise, the processor state is unaffected.
Example:
If the PC contains H'6¢9@@d, then

NOP

changes the PC to H/6@@2.

Condition Codes:

X N 72 VvV C

[ - - - ]

None of the flags are affected.

Instruction Fields:

Radio fhaek

203




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

NOT
logical NOT

NOT(l) .Dd Operand length(l): B, W, L
-@Ax
@AxX+
/expl.W or .L]
[expl@Ax[ (Ri)]

The one's complement of the operand is taken and is stored
in the destination.

Example
If DY contains H'3C, then
NOTB .D@

changes the contents of D@ to H'C3.

Condition Codes:

X N 2 V C
1 - * * g 7]

- Not affected.

- Set if the result is negative, cleared otherwise.
Set if the result is zero, cleared otherwise.

- Always cleared.

- Always cleared.

Q<N Z X
i

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 ]
| @ 1 g [/} [} 1 1 @ [size] mode [ reg. |

The size field contains the size of the oeration.
If the size field is @f, it is byte.
If the size field is @1, it is word.
If the size field is 1@, it is long.

The register and mode fields contain the destination
address mode.

Radio fhaek

204




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

OR
logical OR

This instruction can be interpreted by the Assembler-16 two
differnt ways. By the operands used, the Assembler-16
chooses which instruction to execute.

General Operation:

OR[1l] destination, source

where the source is ORed to the destination and the result
is stored in the destination.

The Assembler-16 chooses which instruction to initiate by
the following guidelines.

OR immediate used if the source is
immediate (indicated by a #
sign).

OR data used for all other OR

operations, one of the
operands 1is always a data
register.

Condition Codes: (Identical for both operations)

X N 7 VvV C
[ - * * 8 8|

X - Not affected.

N - Set if the most significant bit of the result is set,
cleared otherwise.

- Set if the result is zero, cleared otherwise.

Always cleared.

- Always cleared.

Qg N
|

Radio Shaek

205




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

OR
logical OR immediate

OR[1] .Dd, #exp[.W or .L] Operand length(l): B, W, L
-@Ax, #expl.W or .L]
@Ax+, #expl[.W or .L]

/expl[.W or .L], #exp2[.W or .L]

[expl]@Ax[(Ri)], #exp2[.W or .L]
.CCR, #exp[.W or .L] (1=W only)

Example:
If DF contains H'C6, then
ORB .D@, #H'2A

Changes the contents of Df to H'EE.

Instruction Fields:

9 8 7 6 5 4 3 2 1 g
8 @ [size] mode [ reg. |

15 14 13 12 11 1g
|8 8 @8 # g ¢

+

| | byte data (8 bits) [
or
| word data (16 bits) L
orx

long word data (32 bits including previous word)

The size field contains the size of the operation.
If the size field is @f, it is byte.
If the size field is @1, it is word.
If the size field is 1ff, it is long word.

The register and mode fields contain the address mode
of the destination operand.

The data field contains the data immediately following

the instruction:
If the size field is @@, then the data is the low order
byte of the immediate word (8 bits).
If the size field is f1, then the data is the entire

Radio fhaek

206




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

immediate word (16 bits).
If the size field is 1@, then data is the next two

immediate words (32 bits).

Radio fhaek

207




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

OR
Logical OR data

Operand length(l):B, W, L

ORI[1] .Dd, .Ds

.Dd, -@Ay

~-@Ax , .Ds

.Dd, @Ay+

@Ax+, .Ds

.Dd, /exp[.W or .L]
/expl.W or .L], .Ds
.Dd, [expleAyl[ (Ri)
[expleAx[(Ri)], .Ds
.Dd, exp[@PC[(Ri)]]

Example:
If D@ contains H'C6 and D1 contains H'2A, then
ORB .Dg, .D1

changes the contents of D@ to H'EE.

Instruction Fields:

15 14 13 12 11 14 9 8 7 6 5 4 3 2 1 2
11 g g g reg. | size/op] mode | reg. |

The register field contains the data register.

The size/op field contains the size of the operation and
the destination of the result:

Byte Word Long Word Destination
)7} go1 g1g data register
194 141 119 second operand

The mode and register fields contain the location of
the second operand.

Radio fhaek

208




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

PUSHA
PUSH Address

PUSHA /exp Operand length(l): L
[exp] €Ax [(Ri)]
exp [@PC [(Ri)]]

Computes the address and pushes it into the stack.

Example:
If the SP contains H'@@@g@ 6@g@g4, then
PUSHA H'JGFFOALP
changes the contents of memory locations H'6@§@@-6@g@3 to H'AH
FF ga @@, and the SP to H'@@@gP 60440.
Condition Codes:

X N Z VvV C
[— - -]

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 16 9 8 7 6 5 4 3 2 1 ¢
g 1 @8 B8 1 § P § @ 1] mode | reg. |

The register and mode fields contain the address to be
pushed onto the stack.

Radio fhaek

209




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

RET
RETurn from subroutine

RET Operand length(l): Unsized
Pops a long word from the stack and stores it in the program
counter (PC). The previous program counter is lost.
Example:

If the top of the stack contains H'@g g9 68 g9, then
RET

changes the contents of the PC to H'6@@F¥ and resumes

execution from that address.

Condition Codes:

X N Z2Z VvV C

[- - -

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @&
(8 1 g § 1 1 1 § F 1 1 1 8 1 g 1]
Radio fhaek

219




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

RTR
ReTurn with Restore

RTR Operand length(1l): Unsized
Pops a long word and word off the stack and then stores them
in the program counter(PC) and condition code register
(CCR), respectively. The previous values of the PC and CCR
are lost. The Supervisor portion of the SR is unaffected.
Example:
If the top of the stack contains H'@@ @@ 69 g9 g@ @5, then

RTR
sets all of the condition codes of the status register and
changes the contents of the PC to H'6§@¥@ where program
execution resumes.

Condition Codes:

X N 72 v C
*

T*** *I

All flags are set according to the word on the stack.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 ¢
(g 1 g @ 1 1 1 @g @ 1 1 1 g 1 1 17

Radio fhaek

211




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

ROdc
ROtate

General Operation:

Rotates the bits of a specified data register by a count
contained in either a second data register or an immediate
expression whose value is in the range 1-8., Memory
addresses of word length can also be rotated, but only by
one bit. The direction and category are specified in the
mnemonics:

ROL - left logical
ROR - right logical
ROLC - left with carry(extend)
RORC - right with carry(extend)

Radio fhaek

212




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

ROL
ROtate Left logical

c |€------ OPERAND e

Bits rotated out of the high order bit go to the carry and
low order bits. The extend bit is not modified.

Radio fhaek

213




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

ROR
ROtate Right logical

-—> OPERAND | ====-- >»| ¢

|

Bits rotated out of the low order bit go to the carry and
high order bits. The extend bit is not modified.

Radio fhaek

214




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

ROLC
Rotate Left with Carry (extend)

C |€--—--- OPERAND mmmmm - +

X |<--

T

Bits rotated out of the high order bit go to the carry and
extend bits. The previous value of extend bit is rotated low
order bit.

Radio fhaek

215




ASSEMBLER-16 INSTRUCTIONS

TRS-80 ° —
RORC
Rotate Right with Carry (extend)
-——> OPERAND | -——--- > C
-—->| X
I
Bits rotated out of the low order bit go to the carry and
extend bits., The previous extend bit is rotated to low order
bit.
A~
N

Radio fhaek

216




ASSEMBLER-16 INSTRUCTIONS
TRS-80°

ROL or ROR
ROtate logical

Condition Codes:

X N Z V
-+ * 7

X - Not affected.

N - Set if the most significant bit of the result is set,
cleared otherwise.

- Set if the result is zero, cleared otherwise.

Always cleared.

- Set according to the last bit rotated out of the
operand, cleared for a shift count of §.

C
* 1

[
|

Radio fhaek

217




ASSEMBLER-16 INSTRUCTIONS

TRS-80° —
ROL or ROR
ROtate logical data
ROL[1l] or Operand length(l):B, W, L
ROR([1l] .Dx, .Dy
.Dx, #expl[.W or .L]
Example:
If DJ contains H'8@@d @F@FPP, then
ROLL .DF, #1
changes the contents of D@ to H'PUQ@F @F01.
Instruction Fields
15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 4@
[ 1 1 1 @ | count Tdr]size[i/r[1 J1 | req. |
The count field contains the expression specifying the C
count. -
If the immediate/register field contains @, the rotate
count is specified in this field.
Values are 1-8 where 8 is indicated by @@@; values 1-7
sre standard binary, where @gg1 =1, @19 = 2 etc.
The direction field contains the direction of the
rotation.
If the direction field contains @, the rotation is to
the right.
If the direction field contains 1, the rotation is to
the left.
The size field contains the size of the operation.
If the size field is @@, it is byte.
If the size field is @1, it is word.
If the size field is 1§, it is long word.
The immediate/register field contains the
immediate/register.
If the immediate register field contains @, the count
field contains an expression.
If the immediate register field contains 1, the count
N

Radio fhaek

218




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °©

field contains a register.

The register field contains the specifying register to
be rotated.

Radio fhaek

219




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

ROL or ROR
ROtate logical memory

ROL[1] Operand length(l): W
or
ROR[1] -@An
@An+
/exp
[expl@An[Ril

NOTE: rotate of one bit only

Example:

If memory address H'50@@ contains H'@@42, then
ROR /JH'SQFY

changes the contents of H'5000% to H'@@21.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
[ 1 1 1 7] [7] 1 1J]dr] 1 1 ] mode | reqg. |

The direction field contains the direction of rotation.
If the direction field contains @, the rotation is to
the right.
If the direction field contains 1, the rotation is to
the left.

The register and mode fields contain the operand to be
rotated.

Radio fhaek

220




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

ROLC or RORC
ROtate with Carry

Condition Codes:

X N 72 VvV C
T * * * ﬁ * [

X - Set according to the bit last rotated out of the
operand, cleared otherwise.

N - Set if the most significant bit of the result is set,
cleared otherwise.

7 - Set if the result is zero, cleared otherwise.

Vv - Always cleared.

C - Set according to the last bit rotated out of the
operand, unaffected for a shift count of g.

Radie fhaek

221




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

ROLCI[1] or RORCI1]
ROtate with Carry data

ROLC[1] or Operand length(1l):B,W,L
RORCI[ 1] .Dx, .Dy
.Dx, #expl[.W or .L]

Example:

If D@ contains H'@#8 and the carry bit of the status register
is set, then

RORCB .DF, #2

changes the contents of D@ to H'42.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 4@
T1 1 1 g count |dr[size[i/r[1 @] reg. |

The count field contains the expression signifying
register.
If the immediate/register field contains @, the rotate
count is specified in this field.
Values are 1-8 where 8 is indicated by @@@; values 1-7
are standard binary where g¢1 = 1, @19 = 2 etc.

The direction field contains the direction of the
rotation.
If the direction field contains @, the rotation is to
the right.
If the direction field contains 1, the rotation is to
the left.

The size field contains the size of the operation.
If the size field is @@, it is byte.
If the size field is @1, it is word.
If the size field is 10, it is long word.

The immediate/register field contains the
immediate/register.
If the immediate register field contains @, the count
field contains an expression.

Radio fhaek

222




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

If the immediate register field contains 1, the count
field contains a register.

The register field contains the register to be rotated.

Radio fhaek

223




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

ROLC or RORC
ROtate with Carry memory

ROLCI[1] Operand length(l): W
or
RORC{1] -@An
@An+
/exp

[expl@An[ (Ri)]

NOTE: Rotation of one bit only

Example:

If the memory address H'60@F contains H'F@@FPY and the carry
bit of the status register is set, then

RORC /H'6000

changes the contents of address H'60@¢ to H'F@AY.

Instruction Fields:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 ¢
11 1 1 g @ 1 @g[dr] 1 1 | mode | req. |

The direction field contains the direction of the
rotation.
If the direction field contains @, the rotation is to
the right.
If the direction field contains 1, the rotation is to
the left.

The register and mode fields contain the operand to be
rotated.

Radio fhaek

224




ASSEMBLER~-16 INSTRUCTIONS

TRS-80 °

SETcc
SET on condition

SETcc .Dd Operand Length(l): Byte
-ead
@ad+
/exp
[expl@Adl (Ri)]

Tests a condition and sets the destination (byte only) to
all ones (H'FF) if the condition is true, or to zero if the
condition is false.

Example:

If D@ contains H'@F and the zero bit of the status register
is set, then

SETE .DY

changes the contents of DJ to H'FF.

Condition Codes:

X N 72 VvV C

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 @
T 1 § 1 | condition | 1 1 | mode | reg. |

The condition field is one of 16 conditions.

The cc mnemonic can be one of the following:

Op code - Mnemonic - Description
p9@99 - SET - always
g111 - SETE - equal
g11g ~ SETNE - not equal

®
Radio Sfhaek

225




ASSEMBLER-16

INSTRUCTIONS

glgl -
gigg -
1919 -
1911 -
1991 -
1998 -
1119 -
1199 -
1191 -
1111 -
aalg -
gg1l -
ggglL -
glgl -
glgg -

The register and

SETC
SETNC
SETP
SETN
SETV
SETNV
SETGT
SETGE
SETLT
SETLE
SETH
SETNH
SETF
SETLO
SETHS

TRS-80°

carry
- no carry

- positive

- negative

- overflow

- no overflow

- greater than

- greater than or equal
- less than

- less than or equal

- higher than

- not higher than

- never

- low

- high or same

mode fields contain the destination

byte where @ or 255 is stored.

Radie fhaek

226




ASSEMBLER-16 INSTRUCTIONS
TRS-80°

SHdc
SHift

General Operation:

Shifts the bits of a specified data register by an amount
contained either in a second data register or an immediate
expression whose value is in the range of 1-8. A memory
address of word length can also be shifted, but only by one
bit. 1In all cases the carry bit (C) as well as the extend
bit (X) receive the bit shifted out of the operand. The
direction and category are specified in the mnemonic as
follows:

SHL left logical

SHR - right logical
SHLA left arithmetic
SHRA right arithmetic

Radio fhaek

227




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

SHL and SHLA
SHift Left Logical/Arithmetic

C & OPERAND <--| @

X |<--

Shifts the zeroes into the low order bit, and the high order
bit into the carry and extend bit.

Note: The only difference in SHL and SHLA is in the
overflow bit after the operation (see condition codes).

Radie fhaek

228




ASSEMBLER-16 INSTRUCTIONS
TRS-80°

SHR
SHift Right Logical

g |-—> OPERAND -—-->| C

-—>| X

Shifts the operand into the carry bit and the extension bit.
Shifts a zero into the most significant bit.

Radie fhaek

229




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

SHRA
SHift Right Arithmetic

-—> OPERAND  |=-—=—-- >| c

-——>| X

Replicates the sign bit and shifts the least significant bit
into the carry and extend bits.

Radio fhaek

230




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

SHL or SHR
SHift logical

Condition Codes:

>

A< ™NZ2

X N 72 Vv C
[ * * * g * 1

Set according to the last bit shifted out of the
operand, unaffected for a shift count of zero.
Set if the result is negative, cleared otherwise.
Set if the result is zero, cleared otherwise.
Always cleared.

Set according to the last bit shifted out of the
operand, cleared for a shift count of zero.

Radio fhaek

231




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

SHL or SHR
SHift logical data

SHL[1] Operand length(l):B,W,L
SHR[l].Dgf .Dy
.Dx, #expl[.W or .Ll]

Example:
If D@ contains H'8132, then

SHLW .DZ, #1
changes the contents of Df to H'@264.
If DF contains H'8132, then

SHRW .Dg, #1

changes the contents of DF to H'4§99.

Instruction Fields:

1 14 13 12 11 1¢ 9 8 7 6 5 4 3 2 1 @
1 1 1 g | count J[dr[size [i/r[@ [1 | reg. |

The count field contains the expression signifying the
count.
If the immendiate/register field contains f§f, shift
count is specified in this field. Values are 1-8 where
8 is indicated by @@0; values 1-7 are standard binary,
where g0l =1 @10 = 2 etc.

The direction field contains the direction of the shift.
If the direction field contains @, the shift is to the
right.
If the direction field contains 1, the shift is to the
left.

The size field contains the size of the operation.
If the size field is @@, it is byte.
If the size field is @1, it is word.
If the size field is 1¢, it is long word.

Radio fhaek

232




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

The immediate/register field contains the
immediate/register.
If the immediate/register field contains @, the count
field contains an expression.
If the immediate/register field contains 1, the count
field contains a register.

The register field contains the register to be shifted.

Radio fhaek

233




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

SHift logical memory

SHL[1] Operand length(l): W
or
SHR[1]
-@An
@An+
/exp

[expleAn[ (Ri)]

NOTE: Shift of one bit only

Example:

If memory address H'6@@@ contains H'7341, then
SHLW /H'6000

changes the contents of address H'60@0 to H'E682.

If memory address H'60@@ contains H'7341, then
SHRW /H'6009

changes the contents of address H'60@gJ to H'39Af.

Instruction Fields:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 @
[ 1 1 I @ @ @ 1[dr[1 1 ] mode | reg. |

The direction field contains the the direction of the
shift,.

If the direction field contains @, the shift is to the

right.

If the direction field contains 1, the shift is to the
left.

*
The register and mode fields contain the operand to be
shifted.

Radio fhaek

234




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

SHLA or SHRA
SHift Arithmetic

Condition Codes:

X N Z Vv C
*

T*** *l

X - Set according to the last bit shifted out of operand,
unaffected for a shift count of zero.

N - Set if the most significant bit of the result is set,
cleared otherwise.

7 — Set if the result is zero, cleared otherwise.

V - Set if the most significant bit is changed at anytime
during the operation; cleared otherwise.

C - Set according to the last bit shifted out of the
operand; cleared for a shift count of zero.

Radio fhaek

235




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

SHLAI1l]
SHift Arithmetic data

SHLACI[1] Operand length(l):B, W, L
SHRA[l].sz .Dy
.Dx, #expl.W or .L]

Example:
If DJ contains H'8132, then

SHLAW .DF,#1
changes the contents of Df to H'@264.
If DF contains H'8132, then
SHRAW D@, #1

changes the contents of DF to H'CF99.

Instruction Fields:

15 14 13 12 11 1g 9 8 7 6 5 4 3 2 1 @
[ 1 1 1 @ ] count Jdr] sizeli/r[@ [# | reg. |

The count field contains the expression signifying the
count.
If the immediate/register contains §, the shift count
is specified in this field.
Values are 1-8 where 8 is indicated by @g@@; values 1-7
are standard binary, where @@l = 1, #10 = 2 etc.

The direction field contains the direction of the shift,
If the direction field contains @, the shift is to the
right.
If the direction field contains 1, the shift is to the
left.

The size field contains the size of the operation.
If the size field is @@, it is byte.
If the size field is @1, it is word.
If the size field is 10, it is long word.

Radio fhaek

236




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

The immediate/register field contains the
immediate/register.
If the immediate/register field contains @, the count
field contains an expression.
If the immediate/register field contains 1, the count
field contains a register.

The register field contains the register to be shifted.

Radio fhaek

237




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

SHLA or SHRA
SHift Arithmetic memory

SHLA[1] Operand length(l): W
or
SHRA[1l] -@An
@An+
/exp

[expl@An[(Ri)]

NOTE: Shift of one bit only

Example:

If memory address H'60@@ contains H'7341, then
SHLAW /H'6000

changes the contents of address H'60@f to H'E682.

If memory address H'6@@@ contains H'7341, then
SHRAW /H'6000

changes the contents of address H'6§@0 to H'39Af.

Instruction Fields:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 @
[ 1 1 1 g 9 @ @ldr] 1 1 ] mode | reg. |

The direction field contains the direction of the shift.
If the direction field contains @, the shift is to the
right,
If the direction field contains 1, the shift is to the
left.

The register and mode fields contain the operand to be
shifted.

Radio Sfhaek

238




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

ST
STore

This instruction can be interpreted by the Assembler-16 as
two different instructions. By the operands used, the
Assembler-16 chooses which instuction to initiate.

General Operation:

ST[1] source, destination

where the source is the contents of a register and the
destination is an address in memory or another register.

Radio fhaek

239




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

ST
STore data/address register

ST[1] .Ds, -@ad Operand length(l): B, W, L
.Ds, @ad+
.Ds, /expl[.W or .L]
.Ds, [expl@Ad[(Ri)]
.Ds, .Ad
.Ds, .Dd
.As, —-@Ad
.As, @ad+ (Note: all operations using
.As, /expl.W or .L] Address Register direct mode
.As, [expl@Ad[(Ri)] have 1 = W or L only.)
.As, .Ad
.As, .Dd4d

Example:
If DF contains H'F@PF and AF contains H'699F, then
STW .D@,eag+

changes the contents of the memory address H'60@@ to H'FAQF
and increments Af@ by 2.

Condition Codes:

X N Z VvV C
| - * * g g1
Unaffected.

Set if the result is negative, cleared otherwise.
Set if the result is zero, cleared otherwise.
Always cleared.

Always cleared.

Qg2 N
Wwuwnnu

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @

destination source
g g | size req. | mode mode | regq.

The size field contains the size loaded.

Radie fhaek

249




ASSEMBLER-16

INSTRUCTIONS

If the size field
If the size field
If the size field

The destination fields

addressing mode.

TRS-80 °

is #1, it is byte.
is 11, it is word.
is 1¢, it is long.

contain the destination

The source fields contain the source register.

Radio fhaek

241




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

ST
STore status register

ST[1] .SR, Ad Operand length(l): W
.SR, @Ad4+
.SR, /expl.W]
.SR, [expl@Ad[(Ri)]
.SR, .Dd
Example
If the SR contains H'8715, then
ST .SR, .D¢

changes the contents of Df to H'8715.

Condition Codes:

X N Z2Z VvV C

- - - -7

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1§ 9 8 7 6 5 4 3 2 1 @
g 1 g @ @ @ @ @ 1 1] mode | reg. |

The register and mode fields contain the addressing
mode of the destination.

Radio fhaek

242




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

STM
STore Multiple

STM[1] Rlist, -€Ad Operand length(l): W,L
Rlist, /exp
Rlist, [expleAdl(Ri)]

Where Rlist is a set of registers (source) separated by
commas (.Rx, .Ry...etc).

Stores the contents of the registers in Rlist in consecutive
memory locations beginning with the location specified by
the destination operand. The order of the register contents
is DF to D7 and Af to A7; except in the predecrementing
mode where the order is A7 to Af, D7 to DF. Note that this
order holds independently of the order given in Rlist (.Al,
.D3, .D2 gives the same results as .D2, .D3, and .Al). If a
word is stipulated in the operand length(l), then the low
order word of the register is stored.

If the destination operand is addressed in the predecrement
mode, the registers are stored beginning with the specified
address, minus two, and continues down through the lower
addresses. The decremented address register is updated to
contain the address of the last word stored.
Example:
If DY contains H'FFFF and Dl contains H'@@FF, then

STMW .Dg, .Dl, /H'6Q0Y
changes the contents of memory addresses H'6@@@-60@F3 to H'FF
FF @@ FF.

Condition Codes:

X N 72 VvV C

-

None of the flags are affected.

Instruction Fields:

Radio fhaek

243




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

15 14 13 12 11 1¢ 9 8 7 6 5 4 3 2 1 4@
T8 1T 9 @ 1 @ @ @ I [sz] mode [ reg. |

The size field contains the size of the operation.
If the size field is f#, it is word.
If the size field is 1, it is long.

The register and mode fields contain the source
addressing mode.

The Rlist field contains the registers in Rlist as
follows:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 ¢
Ta7 a6 A5 A4 A3 A2 Al A D7 D6 D5 D4 D3 D2 D1 D@}

or, for the predecrement mode (where bits corresponding to
the registers included in Rlist are set), the Rlist field
contains the registers as follows:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 ¢
[pDf DI D2 D3 D4 D5 D6 D7 A@ AL A2 A3 A4 A5 A6 AT7]

A word extension is added to the operation word for this
instruction (Rlist).

Radio fhaek

244




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

STP
STore Peripheral

sTPll] .Ds, [expl@Ad Operand length(l): W, L
Loads data from the data register (source) to alternate
bytes of memory.

Examples:

If DF contains H'@lFF 2FFl, and AfJ contains H'60@@, then

STPL .Dg,eap

changes the contents of memory address H'6@@@ to H'#1,
H'6002 to H'FF, H'60@4 to H'2F, and H'60@6 to H'Fl.

OPERAND LENGTH: L
DESTINATION ADDRESS

EVEN

DATA REGISTER
—_——>

ITa]BJ]c D] or
—— ODD

o|Q|w|{>

gjO|w|>

If D@ contains H'@1FF and Af contains H'60@@, then
STPW .Dg,enp

changes the contents of memory address H'6§@@ to H'#1l and
address H'60@2 to H'FF.

Radio fhaek

245




ASSEMBLER-16 , INSTRUCTIONS

TRS-80 °

OPERAND LENGTH: W

DESTINATION ADDRESS

EVEN

A
B

DATA REGISTER

——>
[ | A B or
—-———> ODD

W

Condition Codes:

X N Z V C

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1g 9 8 7 6 5 4 3 2

g

g g @ @] data reg.]1l J1 [sz|[@ @ 1Jadd.reg.

[exp

The size field contains the size of the operation.
If the size field is @, it is word.
If the size field is 1, it is 1long.

The data register field contains the source of the
data register.

The address register field contains the address
register used in the indirect mode (plus optional
displacement).

The [exp] field specifies the displacement used in
calculating the operand address.

Radio fhaek

246




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

SUB
SUBtract

This instruction can be interpreted by the Assembler-16 four
different ways. The Assembler-16 specifies which is to be
executed by the operands used.

General Operation:
SUB[1l] destination, source

where the source is subtracted from the destination (d) and
the result is stored in the destination. The size of the
operation will vary from one operation to another and is
optionally stipulated.

The Assembler-16 chooses which instruction to execute
according to the following guidelines:

SUB quick source is immediate (indicated
by a # sign) and in the value
range 1-8,

SUB address destination is an address
register.

SUB immediate source is immediate and
greater than 8 (more than
3-bit-data).

SUB data register all remaining subtraction

operations. A data register is
always one of the operands.

Radio fhaek

247




ASSEMBLER-16 o INSTRUCTIONS
TRS-80

SUB
SUB quick/ SUB immediate

SUBI[1] .Dd , #expl[.W or .L] Operand length(l): B, W, L
-@ad, #expl.W or .L]
@Ad+, #expl[.W or .L]
/expl[.W or .L], #exp2[.W or .L]
[explleAax[(Ri)], #exp2[.W or .L]
.Ad, #expl[.W or .L] (quick only)

Example:
If DF contains H'3F@5, then

SUBB .DY, #3

changes the contents of D@ to H'3F@2.

Condition Codes:

X N Z VvV C
[ * * * * *

I

X - Set the same as carry, set if borrow is generated,
cleared otherwise.

N - Set if the result is negative, cleared otherwise.

7 - Set if the result is zero, cleared otherwise.

V - Set if the overflow is generated, cleared otherwise.

C - Set if borrow is generated, cleared otherwise.

No flags are affected if Subtraction to Address register is
made.
Instruction Fields: SUB quick

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 4@
T 1 g 1] data | 1 [size] mode | reg. |

The data field contains 3-bit data, values 1-8, (@g@l1-111
= 1-7 decimal; @@@=8 decimal)

The size field contains the size of the operation.
If the size field is @@, it is byte.

Radio fhaek

248




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

If the size field is @1, it is word.
If the size field is 1§, it is long word.

The register and mode fields contain the destination.
If the size field is byte then the address register
direct is not allowed.
If the size field is word and the destination is the
address Register, the source is sign-extended to
32-bits (see SUB address register).

Condition Codes:

X N 72 vV C
*

|*** *T
X - Set the same as carry(C), set if borrow is generated,
cleared otherwise.
N - Set if the result is negative, cleared otherwise.
7 - Set if the result is zero, cleared otherwise.
V - Set if overflow is generated, cleared otherwise.
C - Set if borrow is generated, cleared otherwise.
Instruction Fields: SUB immediate

Operand length(l): B,W,L

The number of extensions for the immediate data vary
according to the size of the operation (see data fields).

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 @
[ § d § @ @ 1 g @ [size] mode | reg. |

+

L [ byte data (8 bits) |
or
| word data (16 bits) 1
or

long word data (32 bits, including previous word)

The size field contains the size of the operation.
If the size field is @@, it is byte.
If the size field is @1, it is word.
If the size field is 1@, it is long word.

Radio fhaek

249




ASSEMBLER-16 INSTRUCTIONS

TRS-80 ©

The register and mode fields contain the address mode
of the destination operand.

The data fields contain the data immediately following

the instruction:
If the size field is @@, the data is in the low order
byte of the immediate word (8 bits).
If the size field is @1, the data is the entire
immediate word (16 bits).
If the size field is 10, the data is the next two
immediate words (32 bits).

Radio fhaek

259




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

SUB
SUB address register

sus[ll .Ad, .As Operand length(l):W,L
.Ad, .Ds
.Ad, -@As
.Ad, @As+
.Ad, /expl.W or .L]
.Ad, [expleAy[(Ri)]
.Ad, expl@PCI[(Ri)]]
.Ad, #expl.W or .L1(SUB immediate only)

Note that an address register is always the destination

operand.

Example:

If Af contains H'@@3F @@1F and Al contains H'Qgod P@Pd4, then
SUBL .Af, .Al

changes the contents of Af to H'@@3F @ggpcC.

condition Codes:

X N 72 v C

= -]

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1@ 9 8 7 6 5 4 3 2 1 @
T1 7 @ 1] reg.(d) | size | mode | reg. |

The register(d) field contains the destination operand.
It can be any address register.

The size field contains the size of the operation.
Tf the size field is @11, it is word. The source
operand is sign-extended (see EXT) to fill 32 bits of
the address register.
If the size field is 111, it is long word.

Radio Shaek

251




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

The register and mode fields contain the address mode
of the source operand.

Radio fhaek

252




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

SUB
SUB data register

Operand length(l):B, W, L
suB{1l] .pd, .Ds
.bd, -@As
.Dd, @As+
.bd, /expl[.W or .L]
.Dd, [expleAyl[(Ri)]
.Dd, expl@PCIl(Ri)]]
.Dd, .As
operand list continued in next column

-ead ,.Ds
@Ad+, .Ds
/expl.W or .L],.Ds
[expl@Ax[(Ri)],.Ds

A data register is always one of the operands.

Example:
If D contains H'3F and Dl contains H'1l@; then
SUBB .D@, .D1

changes the contents of D@ to H'2F.

Condition Codes:

X N Z Vv C
* %

T * x k Al
- Set if a borrow occurred, cleared otherwise (same as
carry(C)).

- Set if the result is negative, cleared otherwise.
Set if the result is zero, cleared otherwise.

- Set if an overflow is generated, cleared otherwise.
- Set if a borrow occurred, cleared otherwise.

a2z e
1

Instruction Fields:

15 14 13 12 11 1¢ 9 8 7 6 5 4 3 2 1 g
T1 g o 1] reqg. | size/op | mode | reg. |

The register field contains the data register.
The size/op field contains the size of the operation and
specifies the destination of the result:

Radio Shaek

253




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

Byte Word Long Word Destination
—577 g1 glﬁ data register
100 101 119 second operand

The mode and register fields contain the location of
the second operand.

If the second operand is the source operand and its
size is one byte, the address register direct
addressing mode is not permitted.

Radio fhaek

254




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

SUBC
SUBtract with Carry

SUBC[1l] .DpDd, .Ds Operand Sizes: B, W, L
Subtracts the source and the carry bit from the destination.
The results are stored in the destination location.

Example:

If D¥ contains H'3F, Dl contains H'lf, and the carry bit of
the status register is set, then

SUBCB .Dg, .D1

changes the contents of D# to H'2E.

Condition Codes:

X N Z vV C
* %

T x * * L

- The same as carry; set if carry generated, cleared
otherwise.

- Set if the result is negatlve, cleared otherwise.
Cleared if the result is nonzero, unchanged otherwise.
- Set if overflow is generated, cleared otherwise.

- Set if carry is generated, cleared otherwise.

<N =R >
|

Instruction Fields:

15 14 13 12 11 1@ 9 8 7 6 5 4 3 2 1 g
T1 9 @ 1] reg.(d) [I] size| @ @[r/m[reg.(s)]

The R/M field contains the operand addre551ng mode.
"If the R/M field is @, the operation is from data
register to data reglster.
If the R/M field is 1, the operation is from memory to
memory.

The size field contains the size of the operation.
If the size field is @@, it is byte.

Radio fhaek

255




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

If the size field is @1, it is word.
If the size field is 1§, it is long word.

Radio fhaek

256




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

SUBD
SUBtract Decimal (BCD) with extend

suBD .Dd, .Ds Operand sizes: B

-@ad, -eas
subtracts the source and the extend bit from the
destination. The result is stored in the destination.
Binary coded decimal arithmetic 1is used. The operation
size is byte only.

Example:

If D¥ contains 41, Dl contains 35, and the carry bit is
clear, then

SUBD .Dg, .D1

changes the contents of D@ to #6.

Condition Codes:

X N Z VvV C
u_ *

| * U * T
X - Same as carry; set if borrow (BCD) occurs, cleared
otherwise.
N - Undefined.
7 - Cleared if the result is nonzero, unchanged otherwise.
V - Undefined.
C - Set if borrow (BCD) occurs, cleared otherwise.

Instruction Fields:

15 14 13 12 11 1¢ 9 8 7 6 5 4 3 2 1 ¢
T1 § B# @ [ reg.(d) [ 1 g @ @ @[r/m[reg.(s)]

The register(d) field contains the destination register.
If the R/M field is @, reg(d) is a data register.
If the R/M is 1, reg(d) is address register in the
predecrement addressing mode.

The R/M field contains the operand addressing mode.

Radio fhaek

257




ASSEMBLER-16

INSTRUCTIONS

If the R/M field
register to data
If the R/M field
memory.

The register(s) field
If the R/M field
If the R/M field

TRS-80 °©

is @, the operation is from data
register.
is 1, the operation is from memory to

contains the source register.
is @, register(s) is a data register.
is 1, register(s) is an address

register in predecrement addressing mode.

Radie fhaek

258




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

TEST
TEST an operand

TEST(1) .Dn operand length(l): B, W, L
-@An
@An+
/expl .W or .L]
[expl@An[ (Ri)]

Compares the operand to zero. Sets the condition codes
according to the results. No results are saved.

Example:
If DF contains H'@@, then
TESTB .D@

sets the zero bit of the status register and clears all
other status bits.

Condition Codes:

X N 7 vV C
[ - * * o 7 |

Not affected.

Set if the operand is negative, cleared otherwise.
Set if the operand is zero, cleared otherwise.
Always cleared.

Always cleared.

a2z X
o

Instruction Fields:

15 14 13 12 11 1g 9 8 7 6 5 4 3 2 1 '
Tg 1 g @ 1 @ 1 @ |size] mode | reg. |

The size field contains the size of the operation.
If the size field is @@, it is byte.
If the size field is fl, it is word.
If the size field is 1§, it is long.

Radio fhaek

259




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

The register and mode fields contain the addressing
mode of the operand being tested.

Radio fhaek

260

N




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

TESTSET
TEST and SET indivisible

TESTSET .Dn Operand length(l): B
-@An
@An+
/expl .W or .LI]
[exp]@An[ (R1i)]

Tests the operand (byte) for negative and zero conditions,
and then sets the most significant bit of the byte. The
operation is indivisible (noninterruptable) in a multi-user
environment,

Example:
If DF contains H'@@, then
TESTSET . D@

sets the zero bit of the status register and changes the
contents of DY to H'8H.

Condition Codes:

X N Z VvV C
| -k * g 71 l

- Not affected.

Set if the most significant bit of the operand is set,
cleared otherwise.

- Set if the operand zero, cleared otherwise.

Always cleared.

- Always cleared.

z
|

O™
]

Instruction Fields:

15 14 13 12 11 1¢g 9 8 7 6 5 4 3 2 1 g
T¢ 1 ® H 1 @ 1 @ 1 1] mode | reg. |

The register and mode fields contain the operand
addressing mode.

Radio fhaek

261




ASSEMBLER-16 INSTRUCTIONS
TRS-80 ©

TEST1
TEST bit

General Operation:

Tests a bit (specified by the source) in the destination.
The state of the tested bit is reflected in the Z condition
code. If a data register is the destination, then the bit
numbering is modulo 32(long word). If the destination is in
memory, the operation is performed using modulo 8 (byte) and
the contents of the byte are unchanged.

TEST1[1] source(s) destination(d)

Condition Codes:

X N Z VvV C

I - - %

Not affected.
Not affected.
Set if the bit tested is zero, cleared otherwise.
Not affected.
Not affected.

[

A< Z N
I

Radie fhaek

262




ASSEMBLER-16 INSTRUCTIONS
TRS-80°

TEST1 data register

TEST1[1] .Ds, -@Ay Operand length(l): B for
.Ds, @ay+ memory destination
.Ds, /exp 1. for data register
.Ds, [expleAyl[(Ri)] destination
.Ds, expl@PCI[(Ri)]]
.Ds, .Dd

The source is a data register (specified as the first

operand).

Example:

If D@ contains H'@PPPP PPP5 and D1 contains H'@PPF FP@F4, then
TEST1L .D@g, .DL

sets the zero bit of the status register.

Instruction Fields:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 @
[# 9 @ @ [reg.(s) [ I] ] @] mode [ reg. |

The register(s) field contains the data register which
contains the bit number

The register and mode fields contain the destination
operand.

Radio fhaek

263




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

TEST]l immediate

TEST1[1] #exp, DA Operand length(l): B for
#exp, -@Ad memory destination L for
#exp, @ad+ Data Register destination.

#expl, /exp2
#expl, [exp2]@Ad[(Ri)]
#expl, exp2[@PCI[(Ri)]]
Note: source (first operand) is immediate, requires a second
word of instruction:
Example:
If DF contains H'@#5, then
TESTLL #3, .DM

sets the zero bit of the status register.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
g g g @ 1 @ @ @ g g ] mode | req.

bit number

The register and mode fields contain the destination.

The bit number field specifies the bit number.

Radie fhaek

264




ASSEMBLER-16 INSTRUCTIONS
TRS-80°

TESTCLR1
TEST and CLeaR bit

General Operation:

Tests a bit (specified by the source) in the destination.
The state of the tested bit is reflected in the Z condition
code. After the test, the bit is cleared. If a data
register is the destination, then the bit numbering is
modulo 32 (long word). If the destination is in memory,
the operation is performed using modulo 8 (byte) and the
byte is written back to the location.

TESTCLR1[1] source, destination

Condition Codes:

X N 72 Vv C
I__*__

I

- Not affected.
- Not affected.
Set if the bit tested is zero, cleared otherwise.
- Not affected.
- Not affected.

O™ 2N
|

Radio fhaek

265




ASSEMBLER-16 INSTRUCTIONS

TRS-80°

TESTCLR1 data register

TESTCLR1[1l] .Ds, -@Ay Operand length: B for memory
.Ds, @Aay+ destination. I. for Data
.Ds, /exp Register destination.
.Ds, [expleayl[(Ri)]
.Ds, .Dd

The source is a data register (specified as the first
operand).
Example:
If DJ contians H'@5 and D1 contains H'lF, then
TESTCLR1L .Dg, .D1
changes the contents of D1 to H'lF and sets the zero bit of
the status register.
Instruction Fields:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 ¢
19 @ @ @] reg.(s) | I] I] #] mode | reg. |

The register(s) field contains the data register which
contains the bit number.

The register and mode fields contain the destination
operand.

Radie fhaek

266




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

TESTCLR1 immediate

TESTCLR1[1] #exp, .Dd Operand length(l): B for memory
#exp, -@Ad destination. L for data
$exp, @Ad+ register destination.

#expl, /exp2
#$expl, [exp2]@Adl(Ri)]

The source (first operand) is immediate, and requires a
second word of instruction:
Example:
If D@ contains H'F@, then
TESTCLRLL #3, .D@

sets the zero bit of the status register (D@ is unchanged).

Instruction Fields:

15 14 13 12 11 1g 9 8 7 6 5 4 3 2 1 4
g @ 9 @ 1 @ g g I @] mode | reg.

bit number

The register and mode fields contain the destination.

The bit number field specifies the bit number.

Radio Shaek

267




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °©

TESTNOT1
TEST and NOT bit

General Operation:

Tests a bit (specified by the source) in the destination.
The state of the tested bit is reflected in the % condition
code. After the test, the bit is changed (NOT). If a data
register is the destination, then the bit numbering is
modulo 32 (long word). If the destination is in memory, the
operation is performed using modulo 8 (byte) and the byte is
written back to the location.

TESTNOT1[1] source, destination

Condition Codes:

X N 72 v C

I - - %

Not affected.
Not affected.
- Set if the bit tested is zero, cleared otherwise.
- Not affected.
Not affected.

T

QSN2 XK

Radio fhaek

268




ASSEMBLER-16

INSTRUCTIONS

TRS-80°

TESTNOT1 data register

TESTNOT1[1l] .Ds, —-@Ay

Operand length(l): B for memory
destination. L for Data
Register destination

The source is a data register (specified as the first

.Ds, @Ay+
.Ds, /exp
.Ds, [expl@Ayl[(Ri)]
.Ds, .Dd
operand).
Example:

If DP contains H'@4 and D1 contains H'@4, then

TESTNOTLL .bg, .D1

changes the contents of D1 to H'l4 and sets the zero bit in

the status register.

Instruction Fields:

15 14 13 12 11 1¢

9 8 6 5 4 3 2 1 @

7
[# 9 @ @ | reg.(s) [ I] p] 1] mode [ reg. |

The register(s) field contains the data register which

contains the bit number.

The register and mode fields contain the destination

operand.

Radio Sfhaek

269




ASSEMBLER-16 INSTRUCTIONS
TRS-80°

TESTNOT1 immediate

TESTNOTL([1] #exp, .Dd Operand length(l): B for memory
#exp, -@Ad destination. L for Data
#exp, @Ad+ Register destination.

#expl, /exp2
#expl, [exp2]@Adl(Ri)]

The source (first operand) is immediate, and requires a
second word of instruction:

Example:

If D contains H'F@, then
TESTNOT1L #5, .Df

changes the contents of D@ to H'DJ and sets the zero bit of

the status register.

Instruction Fields:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 @

9 @9 @ 9 1 @ g g g 1 ]| mode | req.

g g @ g @ g g @] bit number

The register and mode fields contain the destination.

The bit number field contains the bit number.

Radio fhaek

27¢




ASSEMBLER-16 INSTRUCTIONS
TRS-80°

UNLK

UNLinK
UNLK .An Operand length(l): Unsized
Undoes A LINK. Loads the stack pointer from the specified
address register. The address register is loaded with the
long word pulled from the top of the stack.
Example:

If Af contains H'@PPPFFPP and the memory address H'QQPPQP FFEQ
contains H'@® FA @4 9@, then

UNLK .Ag
changes the contents of Af to H'@PFA FFPP and the SP now
contains H'QQQ@P FFP4.
Condition Codes:

X N Z VvV C

[ - - — -]

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 19 9 8 7 6 5 4 3
[ 1 g @ T 1 1 § § I g I T[] reg. |

The register field contains the address register through
which the unlinking is to be done.

Radio fhaek

271




ASSEMBLER-16 INSTRUCTIONS

TRS-80° .

XCH
eXCHange

This instruction can be interpreted by the Assembler-16 as
two different instructions. The operands used determine
which instruction is executed.
XCH[1].Ax, .Ay eXCHange registers Operand length(l): L
.AX, .Dy
.Dx, .Dy
.Dx, .Ay

The contents of two Registers (32 bits) are exchanged.

Example:
If D contains H'FFJP FFPP and D1 contains H'I12FF @g99%, then
XCH .Dg, .p1
changes the contents of D@ to H'12FF #000P and D1 to H'FF@Y —
FFOQ.
Condition Codes:

X N Z VvV C

[— - - -7

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 14 9 8 7 6 5 4 3 2 1 @
|1 1 [’} @ ] reg. X J1] op/mode [ reg. Y ]

The register X field contains one of the registers.
If the exchange is between the data register and address
register, the data register is specified here.

The op/mode field specifies the type of exchange.
If the op/mode field is @1@@@, it is data registers.
If the op/mode field is @1P@gl, it is address registers.
If the op/mode field is 1@@@l, it is both data register
and address register.

Radio fhaek

272




ASSEMBLER-16 INSTRUCTIONS

TRS-80 ¢

The register Y field contains the second register. If
the exchange is between address and data registers the
address register is specified here.

Radio fhaek

273




ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

XCH[1] .Dn
eXCHange words
Operand length(l): W
Exchanges the high order word (16 bits) and low order words
(16 bits) in a data register.
Example:
If DP contains H'F@EPF P9PP, then
XCH .Dg

changes the contents of D@ to H'PPIPF FPPF.

Condition Codes:

X N 72 v ¢C
I_**gg]

- Not affected.

- Set if the most significant bit of the 32-bit result is
set, cleared otherwise.

- Set if the 32-bit result is zero, cleared otherwise.

Always cleared.

- Always cleared.

zZ >

[@<E
|

Instruction Fields:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 ¢
18 1 g @ T 9 ¢ g 9 1 g g g reg. |

The register field contains the data register used.

Radio fhaek

274




ASSEMBLER-16 INSTRUCTIONS
TRS-80 ©

XOR
eXclusive OR logical

This instruction can be interpreted by the Assembler-16 as
two different instructions. By the operands used, the
Assembler-16 determines which instruction to execute.

General Operation:

XOR[1] destination(d), source(s)

where the source is eXclusive ORed to the destination. The
result is stored in the destination.

The Assembler-16 chooses which instruction to initiate by
the following guidelines:

XOR immediate if the source is immediate
(indicated by a # sign).

XOR data if the source is a data
register.

Condition Codes: (Identical for both operations)

X N z2 vV C
| - * * @ @ |

X - Not affected.

N - Set if the most significant bit of the result is set,
cleared otherwise.

7Z - Set if result is zero, cleared otherwise.

V - Always cleared.

C - Always cleared.

Radio fhaek

275




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

XOR
eXclusive OR data

XORI[1] .Dd, .Ds Operand length(l): B, W, L
—@Ax’ .DSs
@Ax+, .Ds

[expl@Ax[(Ri)], .Ds

/expl.W or .L]1, .Ds

Example:

If DF contains H'F5 and D1 contains H'@7, then

XORB .Dg, .D1

changes the contents of Df to H'F2.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 ¢

1 @ 1 1T reg.(s) | size/op] mode | reg. | —
The register(s) field contains the data register. ’
The size/op field is as below:

Byte Word Long Word

199 191 119
The register and mode fields contain the destination
operand.

-

Radio fhaek

276




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

XOR
eXclusive OR immediate

XOR[1] .Dd, #expl[.W or .L] Operand length(l): B, W, L
-@Ax, #expl.W or .L]
eax+, #expl[.W or .L]

/expl[.W or .L], #exp2[.W or .L]

[explleAx[(Ri)], #exp2[.W or .L]
.CCR, #exp[.W or .L] (1=B, W only)

Example:

If DJ contains H'1B5A, then

XORW .DF, #H'FPFY

changes the contents of D@ to H'EBAA.

Instruction Fields:

15 14 13 12 11 14 9 8 7 6 5 4 3 2 1 ¢
19 o @ g 1 g 1 @ Jsize] mode | reg. |

+

[ | byte data (8 bits) [
or
] word data (16 bits) |
or

long word data (32 bits, including previous word)

The size field contains the size of the operation.
If the size field is @@, it is byte.
If the size field is @1, it is word.
If the size field is 1¢, it is long word.

The register and mode fields contain the address mode
of the destination operand.

The data fields contain the data immediately following

the instruction:
If the size field is @@, the the data is the low order
byte of the immediate word (8 bits).
If the size field is @1, the the data is the entire

Radie fhaek

277




ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

immediate word (16 bits).
If the size field is 1, the the data is the next two
immediate words (32 bits).

Radio Sfhaek

278




ASSEMBLER-16 DIRECTIVES
TRS-80°

CHAPTER 9

DIRECTIVES

Radie fhaek

279




ASSEMBLER-16 DIRECTIVES
TRS-80 °

CHAPTER 9/ DIRECTIVES

Assembler directives are commands to the Assembler-16 (and
not 680@F machine instructions). A directive may produce
code, affect the listing, or change the state of the
assembly.

Directives may appear anywhere in the assembly source
program, except for the END directive which must be the last
statement of the program.

Each directive has a unique syntax.

Program Sections

Each source program processed by the Assembler-16 consists
of one or more program sections (PSECTS). They are defined
by the ASECT, DSECT and RSECT directives.

The ASECT directive defines the absolute section; there is a
maximum of one. The RSECT defines a relocatable section;
there may be zero or more relocatable sections in a program,
but only one per assembly. The DSECT directive defines a
dummy section; there may be zero or more dummy sections in a
program. Note: no object is output for a DSECT.

A section of code is delineated by section directives. Code
in the source program following a section directive belongs
to the directive-defining section until another section
directive is encountered.

Sections may be named or blank. Each named, relocated
section is assumed to be independently relocatable from all
other relocatable sections which are blank or named
differently.

Only one blank (unnamed) relocatable section is recognized.
RSECT directives with different names define different
sections. The name of a section may not match the name of
any other section of a different type.

Absolute (ASECT) section is used to generate non-relocatable
code or data references. Addresses of data or code inside
an absolute section cannot be altered by the linker or
loader. It is recommended, therefore, that ASECT sections
precede RSECT sections when coding.

Radio fhaek

281




ASSEMBLER-16 DIRECTIVES
TRS-80 °©

Relocatable (RSECT) sections are used to produce object code
which is relocatable by the linker or loader.

DSECT (dummy section) is used to generate absolute offsets.
No object is output for a DSECT.

If neither an RSECT, DSECT, or ASECT statement begins an
assembly, the blank (unnamed) RSECT is assumed.

Radio fhaek

282




ASSEMBLER-16 DIRECTIVES

TRS-80 °©

ASECT
Absolute SECTion
[global label]l ASECT
Opens an absolute segment and sets the current location
counter to zero. Code assembled in the absolute segment may

not be relocated by the linker or loader.

The label, if any, is defined at the current location
counter after the segment is opened.

Example:
MAIN ASECT

defines the beginning of an absolute segment with the name
MAIN.

Radio fhaek

283




ASSEMBLER-16 DIRECTIVES

TRS-80 °

RSECT
Relocatable SECTion

[global label] RSECT

A relocatable segment is opened with the name defined by the
label, if present, with the location counter initialized to
zero.

Example:

SORT RSECT

defines the beginning of a relocatable segment with the name
SORT.

Radio fhaek

284




ASSEMBLER-16 DIRECTIVES
TRS-80°

DSECT
Dummy SECTion

[global label] DSECT

Opens a dummy segment with the name defined by the label, if
present, with the program counter initialized to zero.

Example:
EQUATES DSECT

defines the beginning of a dummy segment with the name
EQUATES.

Radio fhaek

285




ASSEMBLER-16 DIRECTIVES
TRS-80 °

ORG
ORiGinate program

ORG exp

Sets the current location counter to the value defined by
the expression. The current program section is not changed.

If the current program section is absolute, the expression
must be absolute.

If the current program section is relocatable, the
expression must evaluate to relative to this section.

The expression must be pass-one defined. 1In an absolute
section, exp is the address of the beginning of the ASECT.
In a relocatable section, exp is the number of bytes between
the RSECT and a preceding section (if there is one) or
between @ (if no preceding section).
Example:

ORG H'AQQQ

sets the current location counter to H'AFQPF.

Radio fhaek

286




ASSEMBLER-16 DIRECTIVES
TRS-80 °©

RES
REServe
[ label] RESIm] exp
where
m =B, W, L or null
Increments the current location counter by the number of
bytes specified by the length indicator and the value of the
expression. The length indicator, m, defaults to W. When m
is W or L, the PC is set to an even number before the space

is reserved by incrementing by 1 if PC is odd.

Defines the label at the current location counter (even
boundary if m = W or L).

The expression must be a pass-one defined absolute value.

Example:
TABLE RESW 199

reserves a block of memory which is 2¢@ bytes long, the
first byte of which is known as TABLE.

Radio fhaek

287




ASSEMBLER-16 DIRECTIVES
TRS-80°

EQU
EQUate

global label EQUIm] exp

or
global label EQUIm].register

where
m =B, W, L, U or null
Defines the label to take on the value of the expression or
register in the operand field. If the length indicator, m,
is specified, then the label takes on that length attribute.
If the length indicator is absent, the label assumes the
length attribute of the expression or the register symbol.

The expression must be pass-one defined.

Example:
SLASH EQU v/

equates the word SLASH with the code for "/".

Radio fhaek

288




ASSEMBLER-16 DIRECTIVES
TRS-80 °

END
END of program

[label] END [expl

Defines the label, if present, at the current location
counter. The END directive is the last valid statement in
the assembly. An error message is output on every source
line after this.

If an end-of-file on input is reached prior to an END
statement, a warning message is generated, and an END record

is assumed.

The optional expression operand defines the entry point
address, to which control is transferred after loading.

Note: When several programs are linked the exp is taken
from the last program included.

Example:

FINISH END ENTRY1

defines the end of the program to be here, at statement

label FINISH, and defines ENTRY1l to be the entry point of
the program,

Radio fhaek

289




ASSEMBILER-16 DIRECTIVES
TRS-80 °

TITLE
TITLE of page

TITLE 'string'

"string"
Causes a new page on the listing output, and the character
string is set in the subheader of each subsequent page of

the listing.

The character string should not be packed. It should begin
and end with matching quotes, either single or double.

The TITLE directive is the first line past the page header
on the new page.

Example:

TITLE 'DATA FORMAT ROUTINE'

causes a new page to be printed, and the heading "DATA
FORMAT ROUTINE" to be printed at its top.

Radie fhaek

290




ASSEMBLER-16 DIRECTIVES
TRS-80 °

PAGE
new PAGE

PAGE

Causes a new page on the listing output. The PAGE directive
is the first line past the page header on the new page.

Example:
PAGE

causes a new page to be printed.

Radio fhaek

291




ASSEMBLER-16 DIRECTIVES

TRS-80 °© .
DATA
define DATA
[label] DATA[m] expll,exp2[,...,expnl]
where
m =B, W, L, or null
Computes the values associated with the operand expressions
and stores them in consecutive memory locations. Each
expression occupies a byte, word, or long word depending on
the length indicator: B, W, or L respectively. If no length
indicator is given, default is W. If W or L is specified,
the PC is adjusted to an even boundary before generation of
data. The optional label takes on the value of the current
location counter after adjustment (if any).
The length attribute of the label is set to B, W, or L
according to the length indicator.
If the value is too large for the specified field, it is o~
. . \
truncated and a warning is generated.
Example:
POWER 2 DATAB 1,2,4,8,16
fills 5 bytes beginning at location POWER2 with the numbers
given.
N

Radie fhaek

292




ASSEMBLER-16 DIRECTIVES
TRS-80 °

RDATA
Repeat DATA
[label]l RDATA[m] expl, exp2
where
m = B, W, or null
Computes the value associated with the operand expression
exp2 and stores it in 'expl' consecutive memory locations.
Each exp2 occupies a byte, word or long word depending on
the length indicator (B, W, or L respectively). If no
length indicator is given, the default is W. If W or L is
specified, the PC is adjusted to an even boundary before
generation of data. The optional label takes on the value
of the current location after adjustment (if any).

The length attribute of the label is set to B, W, or L
according to the length indicator.

If the value is too large for the specified field, it is
truncated and a warning is generated.

Note: expl must be a pass-one defined absolute value.

Example:
TABLE2 RDATAL 199,49

defines a 4@ byte area of memory as TABLE2 and fills it
with zeroes.

Radio fhaek

293




ASSEMBLER-16 DIRECTIVES
TRS-80 °

TEXT
TEXT string

[label] TEXT 'string'
"string"

P'string’

P"string"

Stores the operand character string in memory in either
unpacked or packed format. 1In unpacked format, the string
operand begins with a quote (single or double).

Two consecutive quotes inside a character string represent
one quote character as part of the string. Characters are
stored one ASCII, zero-parity character per byte. In packed
format, the characters are first encoded and then packed,
modulo 40, three characters per word, occupying an integral
number of words with blank fill on the right as necessary.
The packing algorithm encodes the characters as:

letter f(letter)
-Z 1-26
-9 27-36
$ 37
- 38

39
all others 1]

A
g

These encoded letters are packed three to a word by setting
the word equal to:

((£(CL)*4P+£(C2))*40)+£(C3)

where multiplication and addition employ unsigned 16-bit
arithmetic.

If a label is present, it is defined at the current location
counter, with a length attribute of B.

Null character strings are valid, no output being generated.

Example:

MSG1 TEXT 'INSERT NEW DISK'

Radio fhaek

294




ASSEMBLER-16 DIRECTIVES

TRS-80 °

defines a block of memory called MSGI and fills it with the
string.

Radio fhaek

295




ASSEMBLER-16 DIRECTIVES

TRS-80 °
SN
TEXTC
TEXT string with Count
[label] TEXTC 'string'
"string"®
P'string'
P"string"”
Stores the characters of the operand as in the TEXT
directive, preceded by a count of the number of characters
in the string.
If the string is packed, the count occupies one word. If it
is unpacked, the count occupies one byte.
If a label is present, it is defined at the current location
counter with a length attribute of B,
Null character strings are valid, a one-word count of #
being generated.
~~
Example:
LINEIN TEXTC 'STRING LENGTH'
defines a block of memory call LINEIN and fills it with the
string, the first element being the string length.
~~

Radie fhaek

296




ASSEMBLER-16 DIRECTIVES

TRS-80 °

REF
REFerence external symbol
global label REFm
where
m=B, W, L or null
The required label is declared to be an external symbol with
a length attribute as defined by the length indicator, m.
If no length attribute is specified, the default is W. All
references to label in code-generating instructions will be
updated by the linker. This restricts the complexity of
expressions in which a label may appear tc that which is
manageable by the linker.

The reference is assumed to be a relocatable address.

Example:
USER1 REFW

declares the word variable USER1 to be an external variable.

Radio fhaek

297




ASSEMBLER-16 DIRECTIVES
TRS-80 °

DEF
DEFine external symbol

DEF symboll[,symbol2[...,symbolnl]]

The symbol(s) are declared to external symbols which are
defined within this module. The symbols must be global
labels, and may be either absolute or relocatable. Symbols
must be DEFined in order to REFerence them from other
modules.

FORM symbols and user-defined op code directives cannot be
DEF'd. Symbols that are external (i.e., declared by REF)
cannot be DEF'd in the same assembly.

Example:

DEF ENTRY1, ENTRY2

defines ENTRY1l and ENTRY2 to be external labels defined
within the current.

Radio fhaek

298




ASSEMBLER-16 DIRECTIVES

TRS-80°

COPY
COPY filename

COrPY filespes

where filespec is any valid TRSDOS-16 file specification
consisting of filename and extension (no password, drive
number, or diskname).

Copies the source file specified by filename into the input
stream after this COPY statement and before the next
statement in the normal input stream.

There is a maximum of nine COPY statements in the assembly.
No nesting of COPY statements is allowed.

Example:

COoPY STDIO

copies the file STDIO into the current location, in the
program.

Radio fhaek

299




ASSEMBLER-16 DIRECTIVES

TRS-80 °

FORM
FORMat definition of data

global label FORMm expl[,exp2[...,expn]]
where
m =B, W, L or null

The FORM directive enables the user to define bits of data.
The global label is defined to be a FORM-symbol (mnemonic).
A FORM-symbol (mnemonic) must be defined by the FORM
directive before it is referenced in a program,

The operand expressions (exp) specify bit-field sizes. They
must be absolute and pass one-defined, and the sum of the
expression values must be 8, 16, or 32 as the length
indicator, m, is: B, W, or L respectively. If no length
attribute is specified, the default is W. Each expression
defines the number of bits occupied by a field in the
generated user instruction which employs this form. Up to
32 fields may be defined for m = L; up to 16 fields may be
defined for m = W; up to 8 fields may be defined for m = 8.

The first expression, (exp) describes the high-order bit
field of the generated object data; the second (if any)
expression the next contiguous field; .... until m is
filled.

Example:

X4X12 FORMW 4, 12

describes a word with two fields of 4 (high order) and 12
bits respectively. X4X12 can then be used as a mnemonic
(Formal Symbol) to generate a word format as follows:

Labela X4X12 3 H'3¢0¢Q

where the bit fields will be @@11 and PP110000080%: the
first field is filled with a decimal 3 and the second with a
hex 3¢4.

Radio fhaek

309




ASSEMBLER-16 DIRECTIVES
TRS-80 °

Extended Use of FORM-symbol (second level directive)

global label FORM-symbol expll,exp2[...,expn]]

The global label (second level mnemonic) is defined as yet
another code-generating Assembler instruction. The code
generated by a second level mnemonic is byte, word, or long
word (depending upon how the FORM-symbol was defined.)

Note: The FORM-symbol must have been previously defined in
a FORM directive.

The number of expressions appearing as operands must match

the number of bit fields defined in the FORM directive. Each
expression may contain reference parameters (&l, &2 ...,&n).

When a second level mnemonic is used in source code its
operands replace the reference parameters (&l, &2...,&n) of
the second-level directive. The data generated are the bit
fields defined by the new expressions list.
With the earlier Example:

X4X12 FORMW 4,12
you can create a second mnemonic:

SECLEV X4X12 3, &l+H'2(

The global label (SECLEV) becomes the second level mnemonic,
used as follows:

[ labell SECLEV H'30f

where the operand H'3@@ replaces the reference parameter &l.
The resulting data (bit fields) would be: 3, H'3@@+H'20 or

go11 9@119p100000.

Note: The sizes of bit fields (4, 12) were given in the
FORM directive.

Radio fhaek

301




ASSEMBLER-16 0° PRIVILEGED INSTRUCTIONS

TRS-8

CHAPTER VI

PRIVILEGED INSTRUCTIONS

Radie fhaek

393




ASSEMBLER-16 PRIVILEGED INSTRUCTIONS
TRS-80 °

As was said in an earlier chapter, the MC68g0¢
microprocessor has two modes of operation: the user mode,
and the supervisor mode. This chapter deals with the
additional instructions generated by the Assembler-16. They
are available in the supervisor mode and are called
"privileged" instructions.

The TRSDOS-16 Operating System works in the supervisor mode.
However, in order to protect itself it does not permit the
user to enter this mode. Therefore, there is no way to
enter the supervisor mode while operating under TRSDOS-16.

Radio fhaek

395




ASSEMBLER-16 PRIVILEGED INSTRUCTIONS
TRS-80 °

AND
AND status register
AND[1] .SR, #exp[.W or .L] Operand length(l): B, W
Performs a logical AND on the immediate expression (#exp)

and the status register (SR), and stores the result in the
status register.

Example:
If the SR contains H'20¢15, then
ANDB .SR, #H'F6

changes the contents of the SR to H'2¢14.

Condition Codes:

X N Z VvV C
* %

l,* * * [

All of the flags are set according to the operation.

Instruction Field:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 g
'] [’} g g [’ g 1 @ | size [ mode | regq.
word data (16 bits)

The size field contains the size of the operation.
If the size field is @@, it is byte.
If the size field is @1, it is word.
If the size field is 1§, it is long.

The register and mode fields contain the destination
(status register) 111 104.

The word data field contains #exp.

Radio fhaek

307




ASSEMBLER-16 CJC) PRIVILEGED INSTRUCTIONS

TRS-8
N
LD
LoaD status register
LD[1] Destination source Operand length(l): W
LD[1] .SR, #expl.Wor .L]
.SR, -@As
.SR, @As+
.SR, /expl.W or .L]
.SR, [expl@As[(Ri)]
.SR, expl[@PCI[(Ri)]]
Loads the contents of the source (second) operand into the
status register (SR). The source operand is a word. All
bits of the status register are affected.
Example:
If the SR contains H'231¢, then
LDW .SR, #H'2015
N
changes the contents of the SR to H'2015. -
Condition Codes:
X N 2 v C
I *  x  * % *—T
All flags are set according to the source operand.
Instruction Field:
15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
[ @ 1 ['] [’} [} 1 1 g 1 1T mode | reg. |
The register and mode fields contain the address of
the source operand.
~~

Radio fhaek

308




ASSEMBLER-16 PRIVILEGED INSTRUCTIONS
TRS-80 °©

MOV
MOVe status register

MOV[1] Destination, Source
MOV[1] .SR, .Ds Operand length(l): W
Moves the contents of a data register to the status
register.
Example:
If DJ contains H'2015, then

MOVW .SR, .DZ

changes the contents of the SR to H'2015.

Condition Codes:

X N Z v C
| * * * * *

T

All of the flags are set according to the source operand.

Instruction Field:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 ]
I 1 [7] ] 1 1 @ 1 1] mode | reqg. ]

The register and mode fields contain the source data
register.

Radio fhaek

309




ASSEMBLER-16 PRIVILEGED INSTRUCTIONS
TRS-80 °

MOV
MOVe user stack pointer

MOV[1] Destination, source
MovIl]l.ad, .USP Operand length(l): L
.USP, .As
Moves the contents of the user stack pointer (USP) to or
from an address register.
Example:
If the USP contains H'@PFF @PQ0F, then
MOVL .Ag, .uUsp

changes the contents of Af to H'Q@FF @gogyg.

Condition Codes:

X N 72 VvV C

- - - - -7

None of the flags are affected.

Instruction Field:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 ¢
[ 1T § ¢ 1 1 1 g g 1 1 g Jar] reg. |

The direction field contains the direction of the move.
If the direction field contains @, the contents of the
user stack pointer is moved from an address register.
If the direction field contains 1, the contents of the
user stack pointer is moved to and address register.

The register field contains the address register number
used in the operation.

Radie fhaek

319




ASSEMBLER-16 PRIVILEGED INSTRUCTIONS
TRS-80°

OR
inclusive OR status register
OR[1] .SR, #expl[.W or .L] Operand length(l): B, W
Performs a logical OR on the immediate expression (#exp) and
the status register (SR), and stores the result in the
status register.
Example:
If the SR contains H'2¢15, then
ORW .SR, #H'AgQQ

changes the contents of the SR to H'Afg15.

Condition Codes:

X N Z Vv C
l * * * * *

r

All of the flags are set according to the operation.

Instruction Field:

15 14 13 12 11 14 9 8
g9 9 9 g g g @77
word data (16 bits)

7 6 5 4 3 2 1 @
size] mode | reg.

The size field contains the size of the operation.
If the size field is #f@, it is byte.
If the size field is @1, it is word.
If the size field is 1§, it is 1long.

The register and mode fields contain the destination
status register. 111 1090

The word data field is the expression.

Radio Sfhaek

311




ASSEMBLER-16 @ PRIVILEGED INSTRUCTIONS

TRS-80 —

RESET

RESET external devices
RESET Operand length(l): unsized
Resets all external devices. The processor state, other
than the program counter, is unaffected and execution
continues with the next instruction.
Example:
If the PC contains H'60@4, then

RESET

resets all external devices and increments the PC to H'6@@6.

Condition Codes:

X N 7Z VvV ¢C

L_ - - - - T e

None of the flags are a affected.

Instruction Field:

15 14 13 12 11 1¢
| # 1 g @ 1 1

S
wfw
SIS
=
=l

9 8 7 6 5
1 g9 g 1 1

Radio fhaek

312




i

ASSEMBLER-16 PRIVILEGED INSTRUCTIONS
TRS-80 °

RETI
RETurn from Interrupt
RETI Operand length(l): unsized
Pulls the status register (SR) and the program counter (PC)
from the system stack. The previous status register and
program counter are lost. All bits in the status register
are affected.

Example:

If the SP points to memory address H'6@@@ which contains
H'@9 15 g9 ¢¢ FP #@, then

RETI

changes the contents of the SR to H'@FL5 and the PC to
H'F@EgY.

Condition Codes:

X N Z VvV C
* %

T’* * % l

All of the flags are set according to the content of the
word on the stack.

Instruction Field:

15 14 13 12 11 1¢
T¢g 1 @ @ 1 1

o
| oo
|~
| o
i

|
=fw
A1)
e
)

Radio fhaek

313




ASSEMBLER-16 PRIVILEGED INSTRUCTIONS
TRS-80°

WAIT
WAIT for interrupt

WAIT #expl[.W or .L] Operand length(l): unsigned

Moves the immediate operand (#exp) into the entire status
register (SR). The program counter (PC) is advanced to the
next instruction, and the processor stops until an
interrupt, reset or trace occurs.

A trace exception will occur if the trace state is on when
the WAIT is executed. If an interrupt request arrives with
a priority higher than the current processor priority, an
interrupt exception occurs. If the bit corresponding to the
S-bit of #exp is off, execution of the instruction will
cause the privilege violation. External reset will always
initiate reset exception processing.

Example:
If the SR contains H'2¢11l, then
WAIT #H'2015
changes the contents of the SR to H'2¢15 and stops all

processing until an interrupt is received.

Condition Codes:

X N 72 VvV C
* x

Iﬁ* * * [

All the flags are set according to #exp.

Instruction Field:

9 8 7 6 5 4 3 2
1 g g 1 1 1 g ¢
$exp

15 14 13 12 11 19
1

1
g _1 g g 1 1

g
g

The #exp field contains data to be loaded in the status
register,

Radio fhaek

314




ASSEMBLER-16 PRIVILEGED INSTRUCTIONS
TRS-80 °

XOR
eXclusive OR status register

XOR[1l] .SR #expl.W or .L] Operand length(l): B, W
Performs a logical eXclusive OR on the immediate expression
(#exp) and the status register (SR), and stores the result
in the status register.

Example:

IF the SR contains H'2015, then

XORB .SR, #H'LF

changes the contents of the SR to H'20fA.

Condition Codes:

X N 7Z V C
] * * * * *

I

All the flags are set according to the operation.

Instruction Field:

15 14 13 12 11 1¢g 9 8 7 6 5 4 3 2 1 @
7 7] 1 1] 1 g 1 @ Jsize|] mode | req.
word data (16 bits)

The size field contains the size of the operation.
If the size field is @@, it is byte.
If the size field is @1, it is word.
If the size field is 1§, it is long.

The register and mode fields contain the destination
status register 111 1¢0.

The word data field contains the #exp.

Radio fhaek

315




ASSEMBLER-16 APPENDICES

TRS-80°

APPENDIX A/ Object Code Description

The object code produced by the assembler-16 serves as input
to a linker routine before being stored in memory.

The object code defined here is designed to be compact and
simple, yet capable of providing for future language
extensions. '

GENERAL STRUCTURE

The object code for a program is contained in a single file
of sequential organization. The file consists of
sequentially organized groups of data, called plexes, which
may span record boundaries arbitrarily.

Each plex contains a byte count as its first character.
This limits the size of a plex to 255 characters. The byte
count includes the character containing the byte count.
Each plex also contains the plex type as its second
character. Thus, the minimum size for an object code plex
is two bytes.

Symbols within the object code are of variable length. 1In
conformance with the assembler-16 limit, a maximum of 45

characters for each symbol is observed. Whenever a symbol
appears in the object code, the first byte is a count, and
the subsequent bytes contain the symbol in unpacked format.

PLEX TYPES
Define Processor (f)
Byte(s) Contents

Plex size = 11

Plex type = #

Version =

Language Processor = §

Maximum Symbol Size = 45
-14 Date

U WS

The Define Processor (Plex Type @) group must be the first
group of an object file.

Radio fhaek

319




ASSEMBLER-16 o APPENDICES
TRS-80

The Version field refers to the version of the object code.
Subsequent versions may make the prior versions obsolete
and/or incompatible. The linker can use this information to
support selected versions.

The Language Processor field contains a zero for the
assembler-16 - other language processors will be assigned
other numbers.

The Maximum Symbol Size in the object code is currently 45.
The assembler-16 removes all blanks from symbols.

The Data refers to the date of object file creation. Date
is ASCII in the form YYMMDD.

Define Program Section (1)

Byte Contents

g2 Plex Size

1 Plex Type = 1
2-3 Section Number
4-n Section Name

This plex defines a section of code (Relocatable or
Absolute) by name and by number. Subsequent reference to
this section will be by number alone. The section number is
unique for each differently named RSECT. An unnamed RSECT
is given the number 1, and the ASECT is given the number §.

Section Name may contain a blank symbol of length 1 (to
signify unnamed RSECT or ASECT); otherwise, it is the name
given to the RSECT or ASECT assembly language program.

The effect of Define Program Section in the linker is to
select the section as the current section and to set the
location counter to zero.

Select Section (2)

Byte Contents
J} Plex Size = 4
1 Plex Type = 2
2-3 Section Number
®
Radio fhaek

329




ASSEMBLER-16 APPENDICES
TRS-80 °

This plex selects a section to be the "current" section for
subsequent object code groups. Only one section can be
current at any point in the object code.

Another effect of the Select Section is to quiesce the
previously current section. The program location counter of
the quiesced section is not changed by the occurrence of
this plex.

The location counter previously current when this section
was last quiesced becomes the current location counter.

Select Section ORG (3)

Byte Contents

J/] Plex Size = 8
1 Plex Type = 3

2-3 Section Number
4-7 Displacement

This plex selects a section as current and sets the program
location counter to a value relative to the beginning of the
section.

The Displacement is a 32-bit number which defines the value
of the new location counter for the section specified. The
Displacement is relative to the start of the section.

Define Section Length (4)

Byte Contents

/] Plex Size = 8
1 Plex Type = 4
2-3 Section Number
4-7 Section Length

This plex type defines the size of the referenced section
(in bytes). Only one of these plex types per section is
permitted, and there must be one for each relocatable
section defined. This is not required for ASECT.

Define Symbol (5)

Byte Contents
] Plex Size
1 Plex Type = 5

Radio fhaek

321




ASSEMBLER-16 APPENDICES

TRS-80 °
2-3 Section Number
4-7 Value
8-n Symbol
n+l... More definition groups

This plex defines the value of a symbol.

The Section Number identifies the section relative to which
the symbol is defined. If the definition is an absolute
number, the Section Number should be zero.

The Value is 32 bits long and contains an offset from
section start if Section type is relocatable, or an absolute
number if Section type is absolute.

The (Section Number, Value, Symbol) group may be repeated
within the plex to define arbitrarily many symbols.

Declare Symbol Reference (6)

Byte Contents

J} Plex Size

1 Plex Type = 6

2-3 Symbol Number

4-n Symbol

n+l... More reference groups

This plex declares a symbol as an external-referenced name
and assigns a number to it for subsequent usage in an object
code expression.

The Symbol Number is a two-byte binary value, which is
unique to this symbol among all symbols in this program
file. This number is used in object code expressions to
reference the symbol value.

As many (Symbol Number, Reference Size, Symbol) groups as
necessary may follow the first such group.

Load Constant Data (7)

Byte Contents

] Plex Size

1 Plex Type = 7
2-n Date

Radio fhaek

322




ASSEMBLER-16 o APPENDICES
TRS-80

This plex loads data at the current location counter and
increments the location counter by one for each data byte
loaded.

Load Constant Repeat Data (8)

Byte Contents

2 Plex Size

1 Plex Type = 8

2-5 Repeat Count

6-n Repeated Constant

This group loads repetitious data values into memory at the
current location counter. The value to be repeated may be
any number (>@) of bytes as computed from the size of the
plex. The pattern is repeated the number of times specified
in the repeat count. This can be used to repeat bytes,
words, longwords, text strings, etc.

Load Data with Reference (9)
Byte Contents

Plex Size
1 Plex type = 9
2 Modifiable Field Start
3 Modifiable Field Size
4 Skeleton Data Size
5-n Skeleton Data
(n+l)-m Object Code Expression

This plex loads data at the current location counter after
evaluating an object code expression, including the result
as part of the data.

The data to be loaded may be a byte, word, or longword.

The Modifiable Field Start is the bit number (g-31) within
the Skeleton data where the modifiable field begins. The
Modifiable Field Size gives the number of bits in the
modifiable field, contiguous from Modifiable Field Start.

The Skeleton Data Size is 1, 2, or 4 for Byte, Word, or
Longword respectively. The Skeleton Data contains the data
value to be loaded (1, 2, or 4 bytes).

The Object Code Expression consists of a byte count followed
by Polish notation for an expression to be evaluated by the

Radio fhaek

323




ASSEMBLER-16 APPENDICES

TRS-80 °

linker, the result of which is stored in the modifiable
field of the data word. The byte count includes itself.

The object code expression polish consists of operands and
operators combined according to the following rules:

The polish is in the form:

<operand>
or <binary operator><operand><operand>
or <unary operator><operand>

The <operand> may itself be the polish for an expression, or
it may be:

~ a binary value
- an address
- the value of an external symbol

If the <operand> is the polish for another expression, then
the first byte must be an operator. The operators are,
therefore, numbered from 128 onward to distinguish them from
operands. The values for the defined operators are given
below.

Operands may occupy one or more bytes, dependent upon the
operand type. The first byte of each operand is the type
byte. Subsequent bytes define the value associated with the
operand (if any).

Operand Byte
Type | Length l Meaning

g 5 Binary value
1 7 Address
2 3 External Symbol

Contents of extra bytes in operand are:

bytes 32-bit value
bytes section number,
bytes offset

bytes symbol number.

Binary value
Address

N B N W

External Symbol:

Operator Values and Types

Radio fhaek

324

N




ASSEMBLER-16 APPENDICES

TRS-80 °©

Operator Value Type
- 128 unary
- 129 binary
+ 138 binary

* 131 binary
/ 132 binary
.AND. 133 binary
.XOR. 134 binary
.OR. 135 binary
.NOT. 136 unary
.SHL. 137 binary
.SHR. 138 binary

The expression is evaluated using 32-bit values and
accumulators.

The result must "fit" into the Modifiable Field. Sign
extension is permitted; if the resultant value X is in the
range:

n-1 n-1
-2 -1 <X <K 2

where n = number of bits in modifiable field.
Then x is considered to "fit".

Declare Program Entry Point (1)

Byte Contents

[ Plex Size = 8
1 Plex Type = 18
2-3 Section Number
4-7 Entry offset

This plex defines the entry point of the program, to which
control is passed when loading is complete.

End of File (255)
Byte Contents

] Plex Size = 3

Radio Sfhaek

325




ASSEMBLER-16 APPENDICES

TRS-80 °
1 Plex Type = 255
2 Error Indicator

This plex terminates the program, closes all sections, and
signals the end of the file.

The error indicator byte signifies what diagnostics were
generated by the assembler-16.

g = clean assembly
4 = warnings generated
8 = errors generated

Radio fhaek

326




ASSEMBLER-16 APPENDICES

TRS-80 °

APPENDIX B / Memory Map

BEGINNING OF —=> —————=—=————————— e
MEMORY

DEBUG

RUNCOBOL
IF LOADED

BASE ADDRESS —-> ——=——=——=—=-—————————

USER
MEMORY

BOUNDS ADDR ==> =——=—==—==————————————

User memory begins at H'50@@ if the Debugger is not configured
and at H'6d@@ if the Debugger is configured.

Radio fhaek

327




ASSEMBLER-16 APPENDICES

TRS-80°

APPENDIX C/ SAMPLE PROGRAMS

PROGRAM 1l: Simple 16 Bit Binary Addition

This program adds the contents of one memory word (NUMl) to
another (NUM2), and stores the result in a long word (SUM).

RSECT

NUM1 DATAW H'1l0FB

NUM2 DATAW H'FF17

SUM RESL 1

*

BEGIN CLRL D@ Clear Df
LDW .Dg, /NUM1 Put the word at NUM1l into Df§
ADDW .DF, /NUM2 Add the word at NUM2 to D@
STL .D@,/SuM Store the long word at SUM
END BEGIN

After execution of this program, the number H'@@@l 1012 is
stored in the memory location associated with SUM.

PROGRAM 2: BCD Addition

This program adds two binary coded decimals (BCD's) stored
in NUM1 and NUM2, and stores the result in a third memory
location SUM. {(Note: Remember that all BCD arithmetic is
byte size only!)

RSECT

NUM1 RESB 1

NUM2 RESB 1

SUM RESB 1

*

BEGIN CLRL .Df
LDB .D@,/NUML Load the number at NUM1l into Df#
LDB .D1,/NUM2 Load the number at NUM2 into D1
ADDD .Dg,.D1 Add the two numbers
STB .D@,/SUM Store the resulting byte in SUM
END BEGIN

PROGRAM 3: Search a Table

Radio fhaek

328




ASSEMBLER-16 APPENDICES

TRS-80°

This program searches a TABLE for an ITEM. The word size
elements of TABLE are arranged in ascending order, with the
first word being the number of elements in the TABLE. If
the ITEM is found, its number in the TABLE is returned as
ITEMNO. If no match is found, then ITEMNO is set to H'FF.

RSECT

ITEM RESW 1

TABLE DATAW H'5,H'9,H'l5,H'35,H'4Q,H'F3

ITEMNO RESB 1

*

BEGIN LDL .Af,#TABLE Put start address of TABLE in A{d
LDW .D@ ,@eAgd+ Put number of elements in Dg
ADDL .A@,.D@ Point Af 1 word past last elementof
ADDL JAQ,.DF of TABLE (twice since word=2 bytes)
SUBW D, #1 Setup D@ for DB instruction
LDB .D2,#FF Assume that no match will be made
LDW .D1,/ITEM Put ITEM into D§

LOOP CMPW .D1,-@ag Check element pointed to by Af@; if
DBGE .D@,Lo0pP D@ <> -1 and D1 < element, continue
BNE DONE If not equal then branch to DONE
MOVB .D2,.Dg Else move element number to D2

DONE STB .D2,/ITEMNO Store element number in ITEMNO
END

If ITEM equals H'l5, then after execution of the program,
ITEMNO contains H'@2; if ITEM equals H'36, then ITEMNO is
set to H'FF.

PROGRAM 4: Convert ASCII to binary

This program converts an ASCII coded decimal to its binary
value. The program has two basic steps, first, conversion
of the ASCII coded decimal into a binary coded decimal, and
second, conversion of that BCD into its binary equivalent.
Step 1 is accomplished by subtracting #H'30 from the ASCII
number (for example, the ASCII code for 7 is H'37, so H'37 -
H'30 = H'@7). To accomplish step 2, we simply multiply the
BCD by a power of 1@ based on its position in the ASCII
string.

ASECT
ORG H'4000
ASCINT RESL 1
HEXNUM RESW 1
*
®
Radio fhaek

329




ASSEMBLER-16 APPENDICES

®
TRS-80 .

BEGIN CLRL .D2 Clear the sum register (D2)

LDL D@, #1 Set initial power of 10 to 1

LDA LA@ ,ASCINT+4 Put address of 4 past ASCINT in Ag
L.OOP LDB .D1,-@Ag Get byte of ASCINT(start from left)

SUBB .D1,#H'30 Convert to BCD

MULU .D1,.Dg Multiply by power of 1(

ADDL .D2,.D1 Add product to sum

MULU D@, #10 Raise DF to next power of 1¢

CMP .Af ,#ASCINT Check to see if at leftmost byte

BNE LOOP If not, then continue

STW .D2,/HEXNUM Else store sum in HEXNUM

END BEGIN

If ASCINT contains "1245" (coded H'31l 32 34 35), then at the
end of the program, HEXNUM contains H'@4DD.

PROGRAM 4A: Program 4 as a subroutine

Program 4 represents a commonly used routine. For example,

after inputting a number with the KBLINE SVC, you might need

to perform an arithmetic operation with it. But to use it,

you must first convert the ASCII code, which the SVC

returns, to a binary number, which the computer uses. -

In this example, the subroutine requires that a KBLINE SVC
has just been executed successfully. The subroutine
processes the number just as in Program 4, and returns the
binary number to the calling program by putting it at the
top of the user stack (A7).

(Note: The 680@Q limits multiplication to single word
operands; however, to convert a large number, we need power
of ten which takes up more than one word. To overcome this,
we simply treat the multiplicand, i.e., the power of ten, as
two separate words.

We then multiply the BCD by the low word, store it, and then
shift the high word into the low word. The BCD is again
multiplied by this word, but before we add it to the
low-word-product we shift it back to the high word.

For simplicity's sake, we limit the input number to less
than 9 characters, so that we keep the shifted high word
product in one register. However, if you need to convert a
longer number, then you may use more than one register to
contain the operands and the product.

Radio fhaek

330




ASSEMBLER-16 ® APPENDICES
TRS-80
*Subroutine ASCII TO HEX
*
* purpose
* Convert an ASCII string to its binary numberic value.
*
*Entry Conditions
* An ASCII string has been entered via the KBLINE SVC.
*
*Exit Conditions
* The converted string is put onto the top of the stack.
*
*Limitations
* The value of the ASCII string must lie between -9,999,999 and

* 99,999,999,

* returns H'8000 @g@PdF to the stack.

*

ASCII TO HEX
STML
LDW
LDW
CMPW
BGT
SUBB
CLRL
LDL
LDL
ADDW
CMPW
BNE
SUBL
SUBB
NEXT CHARACTER
LDB
SUBB
BN
CMPB
BGT
ILDL
MOVL
MULU
ADDL
SHRL
BE
MULU

If the string is too large, or if it contains a non-
* numeric character (other than a leading minus sign), the subroutine

-Dg, .Dl, .D2,.D3,.D4, .DS, .Al,.Az,—@A7

.D5,#H'1g
.D4,12@A0
.D4,H'@9
ERROR
.D4,$H'0]1
.D3

.Al, #POWERS
.A2,8@A0
LA2,12Q@A0
14@AQ,#H'9D

*Save registers
*put shift value into D5

*Get length of input string

*Check for too big

*If too big then branch

*Else continue; correct for DBC
*Clear out sums register

*Al points to POWERS

*A2 points to buffer from SVC call
*A2 points to 1 byte past buffer
*Check last character for CR

NEXT CHARACTER *If not, then branch
LA2,$H'01 *Else correct length
.D4,$H'01 *Correct counter
D@, -@a2 *Take a byte of the string
.D@ ,#H'30 *Convert ASCII to BCD
NON NUMERIC *If negative result, then branch
.DJ,#H'Q9 *Compare with high bounds
ERROR *If greater than 9, then branch
.D1,@Al+ *Get current power of 1§
.D2,.D1 *Copy D1 in D2
.D1,.Dg *Multiply the BCD by a POWER
.D3,.D1 *Put product in sums register
.D2,.D5 *Move high word to low word
NO HIGH *If D2 = @, then branch
.D2,.Df *Multiply the BCD by high word
®
Radio fhaek

331




ASSEMBLER-16 APPENDICES

®
TRS-80 N
SHLL .D2,.D5 *Shift low word back to high word
ADDL .D3,.D2 *Add product to sum register
*
NO HIGH N
DBC .D4,NEXT CHARACTER *If more numbers, then branch
BR SUB DONE *Emlse branch to SUB DONE
*
NON NUMERIC
ADDB .D@,#H'30 *Convert BCD back to ASCII
CMPB D@, #H'2D *Check for negative sign code
BNE ERROR *If not right code, then branch
CMPB .D@,#H'2D *Make sure it's the lefmost byte
BNE ERROR *If not, then branch
NEGL .D3 *Else take negative of sum register
BR SUB DONE *Branch to SUB DONE
*
ERROR
LDL .D3,#H'8000000 *Error code is H'8QQg gogQ
*
SUB DONE
STL .D3,H'24Q@A7 *Return result to stack
LDML .pbg,.n1,.02,.03,.D04,.D5,.A1,.A2,@A7+ *Restore reg's
RET *Return to calling routine
* /\\‘
POWERS

DATAL 1,19,100,1000,10000,100000,1000000
DATAL 1g00p000 , 100000000, 1000000000

Note that the first thing we did was save the contents of
the registers which the subroutine altered. The STM and LDM
instructions, in combination with pre-decrement and
post-increment indirect addresssing work well for this since
the STW instruction stores from the lowest address register
to the highest data register, while the LDM instruction
loads in just the opposite order.

PROGRAM 5: Converting Hex to ASCII Integer

The last program described how to convert an ASCII integer,
presumably entered from the keyboard, into its binary (or
hex) equivalent. It is also important to be able to do the
opposite--convert the binary to ASCII integer, so that it
can be sent to a display.

To accomplish this, we basically need to run Program 4 in
reverse. That is, we can divide the binary number by powers
of ten to give the BCD value of each decimal digit. We then

Radioe Shaek

332




ASSEMBLER-16 ® APPENDICES
TRS-80

convert the BCD to ASCII by adding H'3§, and store the
values in a string.

However, as in Program 4A, we run into the problem of size.
The 68¢@PP can accept division of a long word by a single
word, resulting in another single word. However, we may
have some numbers which would result in a quotient longer
than one word--this would give an overflow error.

Because of this, we must perform the division by subtracting
a power of ten, repeatedly (summing the number of times we
subtract) until the difference is less than that power of
ten. We then perform the same steps with lower powers of
ten until the power of ten equals one. The number of the
subtractions per power gives the BCD for that power. It is
a simple matter, then, to convert the BCD string into an
ASCII string by adding H'3¢ to the BCD.

*Subroutine HEX TO ASCII

*

* purpose

* Convert a hexadecimal (binary) number into its ASCII-coded

* decimal equivalent.

*

*Entry conditions

* The value of the hex number is pushed to the stack, on top of the
* destination address of the resulting ASCII string.

*

*Exit conditions

* The ASCII string is stored in the memory address specified by the

* calling program.
*

*Limitations

* The hex number must evaluate to a decimal value between

* +/- 1Q%**9,

*

HEX TO INT
STMIL .0bg,.n1,.02,.A0,.A1,-@A7 *Save registers
LDA .AfJ ,POWERS 2 *put address of POWERS2 in Af
LDL .Al,H'18@A7 *Get address of ASCII INT off stack
LDL .D@,H'1CRA7 *Get value of hex number off stack
MOVB QA1+, #H'20 *Store blank for first character
TESTL .Df *Check hex number for sign
BP NEXT POWER *If positive then blank was correct
SUBW LAl #H'Q1 *Flse move back to first character
MOVB @Al+,#H'2D *put a negative sign there
NEGL .Dg *Change the hex number to positive

Radie fhaek

333




ASSEMBLER-16

NEXT POWER
LDB .D2,#H'3¢
LDL .D1,@AQ+

MORE SUBTRACTION

TRS-80 °

APPENDICES

*Set D2 to ASCII zero
*Get next power

CMPL .D@,.D1 *Check for done with that power
BLT NEXT DIGIT *If done then branch out of loop
SUBL .Dg,.D1 *Else subtract power from hex num
ADDB .D2,#H'9P1 *and increment counter
BR MORE SUBTRACTION *Continue subtraction

*

NEXT DIGIT
STB .D2,@Al1+ *Store counter in ASCII INT string
CMPB .D1,#H'Q1 *Check for last power
BNE NEXT POWER *TIf not then do another power
LDML .Dg,.pl,.D2,.A0,.AL,@QA7+ *Else restore registers
RET

*

POWERS 2

DATAL 1000000000,100000000,10000000,1000000 100000
DATAL 1009¢,1909,100,10,1

Compare the Program 5 with Program 4A. Note that when we
loaded the address of POWERS in Program 4A, we used a load
address register immediate (LDL) instruction, while in
Program 5 we used a load effective address (LDA)

instruction. Either is correct

Also note that for Program 4A we ordered POWERS in ascending
order and accessed the elements starting from the front,
while in Program 5 we ordered POWERS2 in descending order
and accessed the elements from back to front. Either is
just as convienient since the 68%@@ has auto increment

(@An+) and decrement (-@An).

PROGRAM 6:Calling a subroutine

Programs 4A and 5 were presented as subroutines. It was
assumed that some other program supplied the subroutine the
necessary parameters (like the address of ASCII INT, etc.).
Here is a sample showing what a main program which calls
these subroutines might look like:

*Data block
*

RSECT
HEXNUM

Radie fhaek

334




ASSEMBLER-16

RESL
SVC BLOCK

RDATA

BUFFER

RDATA

ASCII INT
RESB

*

*pProgram block

*

LDA
MOVW
MOVW
MOVL
BRK
TESTW
BNE
SUBL
CALL
CMPL
BE
STL

STL
PUSHA
CALL
MOVW
MOVW
MOVW

MOVL
BRK

3
-

1
32,0

8¢, 0
12

.Afg,SVC BLOCK
@AM, #H'P5
6@AQ, #H' B9
8@AfQ, #BUFFER
#0

2@Af

ERROR ROUTINE
A7, 4H'04
ASCII TO HEX
QA7 ,#H'80PQQAY
ERROR ROUTINE
@A7+, /HEXNUM

/HEXNUM, -@A7
ASCII INT

HEX TO INT

@AM, #H'P9

6@AQ ,#H'0B
8@AM,#H'0OD
lg@Aﬂ,#ASCII INT
#

TRS-80 °

Radie fhaek

335

APPENDICES

*Set up KBLINE SVC

*Check for SVC error

*On error branch to ERROR ROUTINE
*Make space on stack for hex num
*Call up ASCII TO HEX subroutine
*Check for subroutine error

*On error branch to ERROR ROUTINE
*pop hex number into HEXNUM

*push hex number to stack

*put address of ASCII INT on stack
*Call up HEX TO INT subroutine
*Set up VDLINE SVC




ASSEMBLER-16 ® APPENDICES
TRS-80

APPENDIX D/ The Configuration Command File

Whenever TRSDOS-16 starts up or is reset, it-looks for a
file named CONFIGl6/SYS. This "configuration command file"
tells TRSDOS-16 to link in certain extra operating system
programs.

CONFIG16/SYS should be present on the primary disk device
(drive @ or drive 4). It contains these directives:

INCLUDE RUNCOBOL
INCLUDE DEBUG
END

which tell TRSDOS-16 to link in the RUNCOBOL program and the
DEBUG program.

You may create your own CONFIGl6/SYS file, or modify the
existing one to meet your needs, by using EDITI6.

SAVING THE EXISTING CONFIGl6/SYS FILE
Before creating a new CONFIGl6/SYS file, you will probably
want to save the existing one by renaming it.
For example:
RENAME CONFIGl6/SYS:ﬂ TO DEBCOB/CFG:#

renames the default configuration file. (The new filename
tells you it includes both DEBUG and RUNCOBOL modules.

After renaming the existing CONFIGl6/SYS file, you can
create a new one.

Since you "saved" the existing file, you can use it again.
To do this, rename the present CONFIGl6/SYS file (if you
want to save it) and then rename DEBCOB/CFG back to
CONFIG1l6/SYS:

RENAME DEBCOB/CFG:# TO CONFIGl6/SYS:d

Radie fhaek

336




ASSEMBLER-16 APPENDICES

TRS-80°

TO EDIT OR CREATE CONFIGl6/SYS

Use EDIT16 to edit or create a CONFIGl6 command file.

1.

Type:
EDIT16 <ENTER>

and the Editor's Command mode prompt will be displayed:

To insert commands into the command file, you must get
in the Insert mode, type:

IN <ENTER>

The Editor will display the I? prompt, indicating that
you are in the Insert mode.

You are now ready to insert the names of the programs
you want linked to TRSDOS-16.

Comments may be used. They are indicated by an
asterisk (*) in the first column.

The key word INCLUDE tells TRSDOS-16 the
name of the program. The syntax for the INCLUDE
statement is:

INCLUDE filename
The default extension for filespec is /SYS; it is
optional. Drive numbers, disk ID and Passwords are
not permitted.
Programs are loaded sequentially in memory in the order
they are encountered in the CONFIGl6/SYS file. The
maximum number of programs that may be INCLUDEd is 15.

The programs must be resident on the primary boot
device (Drive @ or Drive 4).

The list is concluded with an END statement.
For example:

* This is the Configuration File for DEBUG
INCLUDE DEBUG

Radio fhaek

337




ASSEMBLER-16 o APPENDICES
TRS-80

END
tells TRSDOS~-16 to link only the DEBUG program. The
first line is a comment and is not executed by
TRSDOS~-16
4. When you are finished inserting, type:

! <ENTER>

to exit the Insert Mode.

5. Save the file with the following command:
SA CONFIGl6/SYS <ENTER>

6. You now have a new CONFIGl6 command file that TRSDOS-16
will use when it powers up or resets.

CONFIGURATOR ERROR MESSAGES

When the Configurator lists a line generating an error, it
prints an error message directly underneath the line number.
Preceding the message, it inserts three asterisks.

In cases of certain syntax or file I/O errors, the
Configurator also marks, with a dollar sign ($), where in
the line the error occurred.
For example:
A1l INCLUBE RUNCOBOL
$
**% Tllegal Command

shows a syntax error in the spelling of INCLUDE.

There are three catagories of Configurator error messages:

A. Configuration Control File Errors
B. Configuration Command Errors
C. Completion Errors
®
Radio fhaek

338




ASSEMBLER-16 APPENDICES

TRS-80 °

A. Congifuration Control File Errors

These errors are FATAL. If one of these errors occur, the
Configurator could not properly execute the CONFIG16/SYS
file. TRSDOS-16 will still be displayed but certain
defaults will have occured:

1. No programs have been INCLUDED
2. DEBUG is kept resident (if available)
3. Any memory not occupied by DEBUG and the resident

Operating System is available to the user.
Use EDIT16 to correct the error (or create a new
configuration file) and reset the system.
Can't Open CONFIGl6/SYS: TRSDOS Error Code = nnn
Look up TRSDOS-16 Error Code nnn in Appendix B and
take appropriate action.
Can't configure system: File CONFIGl16/SYS not proper

format

The CONFIGl6/SYS file is not a VLR type file.

Can't configure system: File CONFIGl6/SYS not found

TRSDOS-16 could not find the CONFIGl6/SYS file.

I/0 Error on File CONFIGl16/SYS: TRSDOS Error Code = nnn

Look up TRSDOS-16 Error Code nnn in Appendix B and
take appropriate action.

B. Configuration Command Errors

These errors occur when a command cannot be processed by the
Configurator. 1If one of these error occurs, the
configurator will continue to process the command lines.
However, the desired result of the configuration file may
not have been accomplished. For example, an INCLUDE file
may have been left out.

Radio fhaek

339




ASSEMBLER-16 ® APPENDICES
TRS-80

Can't INCLUDE program: TRSDOS Error Code = nnn
The Configurator cannot load the program because
of an I/0 error. Look up the TRSDOS-16-Error Code
in Appendix B.

Can't INCLUDE program: Out of Memory
More resident programs were requested than will fit
into user memory.

Can't INCLUDE program: Program already configured

This error occurs any time a program is included twice.

Too many INCLUDED programs: this request ignored

This error occurs if more than 15 programs are
included. The command line that is flagged is ignored
(treated as a comment).

C. Completion Error
*** CONFIGURATION ABORTED ***

This message appears when the configurator could not
finish processing the CONFIGl6/SYS file because of
an I/0 error.

ABOUT THE CONFIGURATOR

The Configurator is invoked whenever the 68@@@ processor is
initialized. It performs several important functions:

. It determines whether the machine debugger is
required. If not, it is eliminated from memory.
This gives you an extra 4K of memory.

. It initializes traps and interrupts. This
eliminates the need to keep extra code resident
in memory.

Radio fhaek

349




ASSEMBLER-16 APPENDICES

TRS-80 °

. It loads in resident programs as specified in
the CONFIGl6/SYS file.

. It reads the AUTO file and passes it to
TRSDOS-16 for execution.

The Configurator is linked in at the end of user memory and
occupies 4K of memory. Upon system initialization, it moves
itself to the top of physical memory. This is because the
resident programs will be loaded at low address, overlaying
the original configurator.

Next the Configurator begins to load the resident programs
requested in the CONFIGl6/SYS file (i.e. DEBUG and
RUNCOBOL). It loads these programs sequentially starting at
the beginning of user memory and up to the beginning of
where the Configurator has relocated itself. This
guarantees that after loading is complete, the user has at
least 4K of memory available (the size of the Configurator).

After configuration is complete, the Configurator is no
longer neccessary and is overwritten.

Radio fhaek

341




ASSEMBLER-16 APPENDICES

TRS-80 °

APPENDIX E/ Additional 68@g@F Instructions

The MC68@PfF microprocessor supports three opcodes in addition
to those supported by the ASSEMBLER-16. These instrucions are
BRanch Always (BRA), Branch to SubRoutine (BSR), and Test a
Bit and Set (BSET).

BRA

BRA is very similar to BR exp(@PC) in that it allows you to
transfer control of your program unconditional to a PC
relative address. The major difference between the two
instructions is that the BRA instruction can use less storage
space when using an eight-bit displacement because it puts the
displacement value in the same word as the instruction code,
thus saving two bytes of storage spaces.

The BRA instruction may also be used for sixteen-bit
displacements; however, the displacement is stored in an
extension word following the instruction field. Like the BR
instruction, the BRA instruction affects none of the
conditions codes.

The instruction field for BRA is:

15 14 13 12 11 1g 9 8 7 6 5 4 3 2 1 @
g 1 1 [/} [/] g g @ | 8-bit displacement
16-bit displacement

For an eight-bit displacement, the second word (containing the
sixteen-bit displacement) is not necessary. For branches
using the sixteen-bit displacement, the eight-bit displacement
field is filled filled with zeroes.

BSR

BSR is similar to the CALL exp(@PC) instruction, in that it
allows you to call a subroutine whose start address can be
given as a displacement relative to the program counter. As
with CALL, the computer first pushes the address of the
instruction following the BSR onto the stack. Also like CALL,
BSR changes none of condition codes.

The major difference between CALL and BSR is that the BSR
instruction may only be one word long when an eight-bit
displacement is specified. For a sixteen-bit displacement,
two words are used, the second word holding the displacement
value.

Radio fhaek

342




ASSEMBLER-16 APPENDICES

®
— TRS-80
The instruction field for BSR is:
15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 8
[/} 1 1 [/} [/} g g @ | 8-bit displacement
16-bit displacement
For an eight-bit displacement, the second word (containing the
sixteen-bit displacement) is not necessary. For subroutine
calls using the sixteen-bit displacement, the eight-bit
displacement field is filled with zeroes.
BSET
BSET is similar to the other MC68g@f bit-test instructions. It tests
a specific bit of the operand, records the result in the zero bit of
the condition codes, and then sets the specified bit. You may
specifiy the bit-number (i.e., the number of the bit to be tested)
either from a data register or as an immediate value. The instruction
field for the former is:
15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
12 8 8 8 | Rs [T T 1T Reg [ Mode |
where Rs is a data register containing the bit number. The
- instruction field for the immediate version is:
15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
[/ [/} [/] [/] 1 g g g 1 1| Reg [ Mode
Bit number
The condition codes for BSET are:
X N Z V C
- -+ - —|
N Not affected
Z Set if the bit tested is zero, cleared otherwise
v Not affected
C Not affected
X Not affected

Radio Shaek

343




S~




Absolute Program, Linking

ADD address register.

ADD binary.

ADD data register . . .
ADD quick/immediate . . .

ADDC binary with Carry. .
ADDD Decimal (BCD) with

Addressing Modes. . . . .

Address Register Indlrect Modes.
Address Register Indirect

Address Register Indirect
Address Register Indirect
Address Register Indirect
16-bit Displacement.

extend. .

INDEX

. .
. .
. .
« e o o o
.
.
e o & e

. .

8-bit Displacement . . .

Implicit Addressing.

Register Direct Modes. . . .
Address Register Direct
Data Register Direct.

Special Address Modes. .

Immediate Data.
Long Absolute .

Program Relative. . . .
Program Relative with In

Short Absolute.

Address Register Direct .
Address Register Indirect Indexed w1th
8-bit Displacement.

Address Register Indirect
Address Register Indirect
Address Register Indirect

16-bit Displacement.

Address Registers . . .
AND AND status register
AND logical AND . . . .
AND logical AND data. .
AND logical AND immediat

ASECT Absolute SECTion. .
Assembler-16, The . . . .
Assembler Command. .
Example . . . .

Assembler Listing,
Cross Reference Llstlngs

e

The o .

with

N e o & o o s o s o

Q-ooo'ooo

Postincrement
Predecrement.
with

.
e
-
.
.
.
.
.
.
. .
.
.

e o e e o o

Error/Warning Messages. . .
List of Errors and Warnlngs.
Side by Side Listing Format .

Statistics Listing. . . .

Assembler Options. .

cHun-oOoOBEXREO

(Current Record Count).

(Errors Only)

(Keep Work Files) .
(Listing File). . .

(Object File)

(Print Listing) . . . .
(Short Listing) . . . .
(Terminal Listing). . .
(Uppercase Conversion).

-
. -
. .
. .

e o o @

Inéexed

s o o 0

with

e & e 6 o » s o o o »

Postincrement
Predecrement.

e e & & e 8 o 8 e e o o




W (Work File Specification)

Assembler-16 Program, The . . . . .
Comments . . .« ¢« « ¢« o o « @
Expressions. . . . . . . .

Constants . . . . . .
Expression Evaluation
Program Counter ., . .
Symbol (Local or Global)
Instructions . . . . .
Directives. . . .
Mnemonics . . . .
Length . . .
Programmed Operations
Labels . . . . . . . . « .
Global. . . . . . . .

Local . . .
Operands . . . . +« « =
General Operand Rules
Assembling an Intermediate File
Bcc Branch on condition . . . .
BR BRanch control addressing.
BRA . . & ¢ o o o o o o o
BRK BReaK . . . . « « . &
BRKV BReaK on oVerflow. .
BSET. . . . . .
BSR . ¢« ¢« ¢ ¢ o o o o &
CALL general. .
CHANGE. . . . .
CHK CHecK agalnst bounds
CLR CLeaR an operand. .
CMP CoMPare . . . .+ =«
CMP CoMPare address . .
CMP CoMPare data. . . .
CMP CoMPare immediate .
CMP CoMPare memory. . .
Comments. . . . « « . .
CONCAT. . . . « o e
Condition Code Reglster
Carry Bit. . .
Extend Bit . .
Negative Bit .
Overflow Bit .
Zero Bit . .
Condition Codes . .
Configurator Command Flle, The.
About the Configurator . . .
Configurator Error Messages. .

1

. . . Y L] 3 ] . L] [ . L] ] 3 L[] [ [ L] 3 . . L] L[] . . L] . L] . . . . [ . o . . L[] L[] . . . .

Configuration Control File Err
Configuration Command Errors.

* o ¢ o o e 6 5 ¢ @ 8 e & 0 & o & & ¢ & 0 ° * O ¢ 6 e o e 6 & ® ® & o o & & & s o & .

Saving the Existing CONFIG1l6/SYS

To Edit or Create CONFIGl6/SYS
COPY COPY filename. . . . .
Cross Reference Listings. .
DATA define DATA. . . . . .
Data Register Direct. . . .
Data Registers. . . . + ¢ « « « .
DBcc test condition Decrement and

Br
Debugger, The . . . . . « « « =« .
Debugger Commands. . . .

Specifying an Address

ran

e 8 s 6 & 8 5 8 6 & 8 8 5 6 s 8 6 s 6 & 6 & &6 & & & * e 8 6 ° * s o e ¢ e * s o 2 s

0..-..-tooc-oooc.tnooooooocoo-cnootoooooooao

f

=~
e o o o o & & o & o o
(D

o 3

(o]

m..t.n.ot.t!"ol..lo'.lo0.‘...0.000..0.0....‘

e & 8 6 6 & & 6 6 8 & & 8 & & 6 & s 8 e 6 5 e 8 B 6 8 8 8 6 5 & & 5 & 8 5 & e 8 6 6 6 e 8 e o s & » &6 e 5 s v o &

e # 6 6 € €& & e e € & 6 & 06 8 e 8 e e e & 6 & & & 4 6 S + 6 8 e 6 2 2 0 0 4 & 6 * e 8 8 e 6 s & s e & s v s & o

. e e & o e @
\O
[=)]




Specifying a value. . . . . .

Register Display . . . « « « « « .
Starting the Debugger. . . . . . .

To Debug an Existing Program.

To Insert a New Program . . .

Debugging the Program . . . . .« « « .« =«
DEF DEFine external symbol. . . . . . .

Specifying a Register Directly. .

DELETE. . .

DIV DIvide 31gned . o .
DIVU DIVide Unsigned. .

Directives.

ASECT Absolute SECT1 .
COPY COPY filename . . .
DATA define DATA . . . .
DEF DEFine external symbo
DSECT Dummy SECTion. . . .
END END of program .

EQU EQUate

FORM FORMat deflnltlon of dat
Extended Use of FORM-symbo
ORG ORiGinate program.
PAGE new PAGE. . . . .
Program Sections . . .
RDATA Repeat DATA. . . .
REF REFerence external
RES REServe. . . « « « o o o
RSECT Relocatable SECTion. .
TEXT TEXT string . . . .
TEXTC TEXT string w1th Count
TITLE TITLE of page. . . . .
DSECT Dummy SECTion . . . . . . .
The .
Entering an Editor Command
Line Numbering . . . . . .
Loading the Editor . . .
Referencing Program Lines
Sample Session . . . .
Specifying Strings . .

Editor,

Editor,

Loading

Editor Command,
Editor Commands

CHANGE
CONCAT
DELETE
INSERT

Work and Scratch Files .

<HMPWOORTQAET O WP

(Address Stop Command) . . . .
(Breakpoint Command) . . . . .
(Change Command) . . . « « « &
(Display Command). . . . . .
(Erase Breakpoints Command . .
(Go Command) .
(Help Command) . . . . . . .
(Next Instruction Command) .
(Quit Debug with Debug OFF

Command) .

(Quit Debug with Debug ON Command)

(Relative Addressing Command).
(Step Command) . . . . .
(View Command) . . . . .

e 8 e & o o & ¢ e
e o e & & & 8 o ¢ o

¢« o e o o & ®
.

n

1

a .
ol

e & & @ ® & ¢ o e & s s v

symbol

e e @ e & 8 ¢ & & s & e * o
e & ® e * 8 6 8 6 8 o 8 & e s & e 6 o ¢ s o s s o e+ o ¢ o

¢« e ¢ 0

The . . . .
Entering an

e o & o o & e o ¢

=

e 6 © & 8 ® 8 & & & o 0 4 8 ¢ 6 & ¢ 6 & & 9 6 & o ¢ s o+ 2+ = o Nes o o
w

80
80
81
82
83
83
83
84
84
84
84
85
86
78

76
75
75
76
14

.298

28

.167
.169
;279
.283
.299
.292
.298
. 285
.289
.288
.300
.301
. 286
. 291
.281
.293
.297
.287
. 284
.294
.296

-

290
285
15
24

17
21
18
23
18
17
24
25
25
26

28
29




LIST . . ¢ ¢ ¢ ¢ ¢« ¢« o o o

MOVE . . . ¢« ¢ ¢ 4 ¢« ¢ ¢ o« &
POSITION . . . . ¢ o« o o o .
PRINT. . . . ¢« ¢« & ¢ v o« « .

QUIT . . . ¢ v ¢« v ¢ v o o &
RELABEL. .

SAVE . . .
SEARCH . .
STRING . .

TAB. . . . .

END END of program .
EQU EQUate. . . . . . .
Error/Warning Messages. . . .
s

Linker Error Messages.

List of Assembler Error
Executing the Program . . . . . .
Expressions . . .« . o o

Q.|. .

n

D o o ¢ o o ¢ ¢ o+ o

FORM FORMat deflnltlon of data.
Extended Use of FORM-symbol
Immediate Data. . . .

Implicit Addressing . . . . . . .
INSERT. & v ¢ ¢« ¢ o o o o o o o
Instruction Fields. . . . . . . .
Instruction Format. . . . . . . .
Instruction Groups. . . . . . . .
Instructions. . . . . « . . . . .
Condition Codes. . . . . . .
Instruction Groups . . . . .
Instruction Fields . . . . .
Syntax . . . . ¢ ¢ e ¢ 4 e .
ADD binary . . . e e e e
ADD qulck/lmmedlate. e e e
ADD address register . . . .
ADD data register. . . . . .
ADDC binary with Carry . . .
ADDD Decimal (BCD) with exte

AND logical AND. . . . . .

AND logical AND immediate. .
AND logical AND data . . . .
Bcc Branch on condition. . .
BR BRanch control addressing
BRA., . . & & & o o o o o o
BRK BReaK. . « « « . e o .
BRKV BReaK on oVerflow e o e
BSET . . ¢« ¢ ¢ ¢ ¢ o o« o o =
BSR. & ¢ ¢ ¢ o o o o o o o =
CALL general . . . . .« . .
CHK CHecK against bounds . .
CLR CLeaR an operand . . . .
CMP COMPare. . « « « o o s
CMP CoMPare immediate. . . .
CMP CoMPare memory . . « o .
CMP CoMPare address. . . . .
CMP CoMPare data . . . . . .
DBcc test condition Decremen

DIV DIvide signed. . . . . .
DIVU DIvide Unsigned . . . .
EXT sign EXTended. . . . . .
ID LoaD data . . . . . . .« &«
I.D LoaD condition codes. . .

n

t

\Y)

Q_.. ® & ¢ & ¢ * 2 * e s & 6 o+ & e o ° & @

.aﬁd

N oo o
=]

oo o o o ¢ o s 02

0'oI.00.0..0.t..ooot'ttc‘.o't.LQo.

¢ 6 4 & & s s 2 e e e " t s 2 s & e 0t s+ e " e o e * * & 8 e e & 6 & & e e

@ 6 e s ¢ e o o o o e

¢ o s o 0o ITe s 2 e s s s

=

N)e » o o o o o o o




LD LoaD data register. . . . . . . . . . .
LD LoaD address register . . . . . « « . .
LDA LoaD Address . . . .

LDM LoaD Multiple. . . . .
LDP LoaD Peripheral data .
LINK LINK and allocate . .
MOV MOVE . . ¢ & o« o o o =«
MOV MOVe address register,
MOV MOVe from SR . . . . .
MOV MOVe general . . . . .
MOV MOVe to condition codes
MUL MULtiply signed. . . .
MULU MULtiply Unsigned . .
NEG NEGate . . . « « « « =
NEGC NEGate with carry . . e o e
NEGD NEGate Decimal (BCD) w1th extend.
NOP No OPeration . . . . .
NOT logical NOT. . . . . .
OR logical OR. . . . .+ . .
OR logical OR immediate. .
OR logical OR data . . . .
PUSHA PUSH Address . . . .
RET RETurn from subroutine

RTR ReTurn with Restore.
ROdc ROtate. . . .- .
ROL ROtate Left 10g1ca1
ROL or ROR ROtate Logical.
ROL or ROR Rotate logical data
ROL or ROR Rotate logical memory
ROLC or RORC ROtate with Carry . . .
ROLC or RORC Rotate with Carry memory.
ROLC Rotate Left with Carry (extend) .
ROLCI[1l] or RORCI[1l] Rotate with Carry data
ROR ROtate Right logical . . . e e .
RORC Rotate Right with Carry (extend) .
SETcc SET on condition . . . . . « . . .
SHdc SsHift . . . . . . o . .
SHL and SHLA SHift Left Loglcal/Arlthm eti
SHL or SHR Shift Logical . . . . . .
SHL or SHR SHift logical data. . . .
SHLA or SHRA SHift Arithmetic. . . .
SHLA or SHRA SHift Arithmetic memory
SHLA[1l] Shift Arithmetic data.
SHR SHift Right Logical. . . .
SHRA SHift Right Arithmetic. .
SHift logical memory . . . . .
ST STore . . . . . e e e s e
ST STore data/address register .
ST STore status register . . . .
STM STore Multiple . . . . . . .
STP STore Peripheral . . .

SUB SUBtract . . .« . .
SUB qulck/lmmedlate. . .

SUB address register . .

SUB data register. . . . .

SUBC SUBtract with Carry . .

SUBD SUBtract Decimal (BCD) with extend.
TEST an operand. . . « « « o o &

TEST data register . . . . « ¢« « ¢ « « « .
TEST immediate . . . + ¢ ¢ ¢ ¢ ¢ o o o o &

t

e o o ¢ o ¢ o o (e o s e o

.174
.176
.178
.179
.181
.184
.186
.187
.192
.189
.188
.193
.195
.197
.199
.201
.203
.204
. 205
.206
.208
.209
.210
.211
.212
.213
.217
.218
.220
.221
.224
. 215
.222
.214
.216
. 225
. 227
.228
.231
.232
. 235
.238
.236
. 229
.230
.234
.239
. 240
.242
.243
. 245
. 247
.248
.251
.253
. 255
. 257
. 259
.263
. 264




TEST1 TEST bit . . . . . .
TESTCLR1 TEST and CLeaR b1t
TESTCLR1 data register . . .
TESTCLR1 immediate . . . .
TESTNOT1 TEST and NOT blt .
TESTNOT1 data register . . .
TESTNOT1 immediate . . . .
TESTSET TEST and SET 1nd1v isi
UNLK UNLinK. . « ¢ « + o &
XCH eXCHange . « « « « o

eXCHange registers. .

eXCHange words. . . .
XOR eXclusive OR logical .
XOR eXclusive OR data. . .
XOR eXclusive OR immediate

Intermediate File,
Labels. . . « ¢« ¢« ¢« « o« « &
LD LoaD address register. .
LD LoaD condition codes . .
LD LoaD data. . . . . « . &
LD LoaD data register . .
LD LoaD status register .
LDA LoaD Address. . . . .
LDM LoaD Multiple . . . .
LDP LoaD Peripheral data.
Line Numbering. . . . . .
Linker, The . . . .
Error Messages
Errors. .

Fatal . .
Warnings.
Example. . . .

Linker Command The
Llnker Map, The. . .
Allocation Map.
Definition Map. .

Assembling

an.

Linker Control Listing.

summary . . . . o

Undefined Reference Map

Linker Options . . .

L (Create Map Flle)
O (Output Program File)
P (Print Linker Map on Prlnter)
T (Print Linker Map on Terminal).
Preparing a Linker Control File.
Creating an Object File .
Creating the Control File

END. . . . .

INCLUDE. . .

ORIGIN . . .

Linker Output Format. . . .

Linking an Absolute Program

LIST. . . .

List of Errors and Warnings
Listings

Assembler. . . .

Linker . . . . .

Loading the Editor. .

Long Absolute . . .
Memory Address Modes

too.'o-cot.co..o.o..oot.o.olo‘loo.
{ d

D e o o o

e & 8 o e o * o s o

L[] L] . L[] - . L[] L] . . . L] L] . L[]

e & ¢ o & o & ¢ 8 & o o+ s o .

¢ o o & & e o ¢ s 0 » & o ¢ .

e & & e & e & e & & s 0o & ° ° s o+ =

" e o e o




Memory Map L] L] * . *® L] * L] - L] . . - L]
Memory Organization . . . . « « . . .

Mnemonics . .« .« ¢ o o o

MOV
MOV
MOV
MOV
MOV
MOV
MOV

MOVE. « +« « o o o o
MOVe address register
MOV from SR . . . . .
MOVe general. . . . .
MOVe status register. .
MOVe to condition codes
MOVe user stack pointer

MOVE . . . - . . . . . . . . . .

MUL

MULU MULtiply Unsigned. .

NEG

NEGC NEGate with carry. . .
NEGD NEGate Decimal (BCD) wi

NOP
NOT

Object Code Description

OperandsS. . « « « « o o o o o o
OR inclusive OR status register
OR logical OR . . . . . .
OR logical OR data. . .
OR logical OR immediate

ORG

Plex TYPES. o « o o «
POSITION. . « « « o« « o
PRINT . . ¢« « o o o o
Privileged Instructions . .

Program Counter . . . . . . .
Program Lines, Referencing. .
Program Relative. . . . . .
Program Relative with Index .
PUSHA PUSH Address. . « « .« =«
QUIT. . « ¢ ¢ ¢ o o o o o « o
RDATA Repeat DATA . . .

REF

PAGE new PAGE . . . . .« =«

MULtiply 51gned . o .

NEGate. « ¢« « « « « o

(e o o
= g
o
e o o
t
D e o o
o]
Rie o o

No OPeration. . . . . . .
logical NOT . . . . . . .

General Structure. . .« .

Plex Types . . . . .
Declare Symbol Reference.
Declare Program Entry Poin
Define Processor. . . .
Define Program Section.
Define Section Length .
Define Symbol . . . . .
Load Constant Data. . . .
Load Constant Repeat Data
L.oad Data with Reference.
Select Section. . .
Select Section ORG.

ORiGinate program .

AND AND status reglster. .
LD LoaD status register. .
MOV MOVe status register .
MOV MOVe user stack pointer.
OR inclusive OR status register.
RESET RESET external devices . .
RETI RETurn from Interrupt . . .
WAIT WAIT for interrupt. . . . .
XOR eXclusive OR status register

.
3
.
.
.
-
.
.

REFerence external symbol

e o @ 8 & @ e o ¢ o 8 e ¢ » s o

a 8 o e & o o o & e o & s * & » o

e & o 6 8 8 & & e & ¢ 8 6 9 8 8 e & ¢ s e +» s o+ o o

e & ¢ 8 o ® & ® 8 e & & 9 o ¢ o o

.327

122 127

186

.187
.192
.189
.309
.188
.310

32

.193
.195
.197
.199
.201
.203
.204
.319
.319
.319
.322
.325
.319
.320
.321
.321
.322
.323
.323
.320
.321
.124
.311
. 205
. 208
.206
. 286
.291

19
34
36

.303
. 307
.308
.309
.310
.311
.312
.313
. 314

315
95
21

ll4

.114

.209

37

.293
.297




Register Direct Modes . . . .
Register/Mode Codes . . . . .
Registers . . . . . . . . . .
Address Registers. . . .
Condition Code Register.

Carry Bit . .

Extend Bit. .

Negative Bit.

Overflow Bit.

Zero Bit. . .

Data Registers ., .

Program Counter. .

Status Register. .
System Stack Pointe
User Stack Pointer . .
RELABEL . . . « & v v &« o o
RES REServe . . .
RESET RESET external dev1ces.

r

RET RETurn from subroutine.
RETI RETurn from Interrupt.
ROdc ROtate . . . . . . . .
ROL or ROR ROtate Logical . .

ROL or ROR Rotate logical data. .
ROL or ROR Rotate logical memory.

ROL ROtate Left logical . . .

ROLC or RORC ROtate with Carry. .
ROLC or RORC Rotate with Carry memory
ROLC Rotate Left with Carry (extend).

ROLC[1l] or RORC[1] Rotate with Carry d

ROR ROtate Right logical. . .

RORC Rotate Right with Carry (extend)

RSECT Relocatable SECTion . .
RTR ReTurn with Restore . . .
Sample Programs . . . . . . .
Sample Session. . . .« e . .
Assembling an Intermedlat
Creating a Source File .
Debugging the Program. .
Executing the Program. .
Linking an Absolute Progr
SAVE., . . ¢ 4 ¢ ¢« o o o« .
SEARCH. . . . + +« ¢ o « &
SETcc SET on condition. . . .
SHdc sHift. . . . . . . .
SHift logical memory. . . . .
SHL and SHLA SHift Left Logica
SHL or SHR Shift Logical. . .
SHL or SHR SHift logical data
SHLA or SHRA SHift Arithmetic
SHLA or SHRA SHift Arithmetic
SHLA[1l] shift Arithmetic data
Short Absolute. . . . . . .
SHR SHift Right Loglcal . e .
SHRA SHift Right Arithmetic .
Side by Side Listing Format .
Source File, Creating a . . .
Special Address Modes . . .

Specifying a Register Dlrectly

Specifying a value. . . . . .
Specifying an Address . . . .

e Fll .
am. . .
1/Arith
memory.

oo.oomoo.o

D e o o ¢ ¢ o o o o o

3
ot

e o & o o o

m ¢ o o e o e o

46 o o 8 © 2 @ e o ° ° & & e o @

Q

¢ & & ¢ ¢ 0 ¢ 9 e+ * s o o e @ s o

® ¢ & e o & & & B+ s e+ 6 e o " 4 s & & e o

. . [

® & e o o e o o o




Specifying Strings. .
Statistics Listing. .
Status Register . . .
STM STore Multiple. .
STP STore Peripheral.
STRING. . « ¢ « o« o
ST STore. . . .

ST STore data/address

SUB address register.
SUB data register . .
SUB quick/immediate .
SUB SUBtract. . . .

regi
ST STore status register.

SUBC SUBtract with Carry.
(BCD

SUBD SUBtract Decimal
Syntax. . . . o .
System Stack Polnter.
TAB . . . . e« o e
TITLE TITLE of page
TEST an operand . .
TEST data register.
TEST immediate. . .
TEST1 TEST bit. . . .
TESTCLR1
TESTCLR1
TESTCLRL
TESTNOT1
TESTNOT1
TESTNOT1

e o e o

immediate. .

immediate. .

TEXT TEXT string. . .

data register.

TEST and CLeaR
data register.

bit

TEST and NOT b1t
TESTSET TEST and SET indivisib

Ul e o o o o

¢ e & e % 8 8 ~n, 0t e s o o

t

t

TEXTC TEXT string with Count

UNLK UNLinkK . . . . .
User Stack Pointer. .

WAIT WAIT for interrupt

Work and Scratch Files.

XCH eXCHange. . . . .
eXCHange
eXCHange

eXclusive

eXclusive
eXclusive
eXclusive

words .
XOR OR data
XOR
XOR

XOR

registers

OR immediate.
OR logical.
OR status register.

D e o o

with

1

r

e o & ¢ ¢ o o & @ e o o e o o o e e & o ¢ s .

e o e o o o e s e 0

ot
D s o

[T

23
57
96

.243
. 245

43

.239
. 240
.242
. 251
.253
.248
. 247
. 255
. 257
.129

95
44

. 290
. 259
.263
. 264
.262
. 266
. 267
. 265
.269
.270
.268
. 261
.294
.296
. 271

95

.314

18

.272
.272
.274
.276
. 277

. 275
.315













RADIO SHACK A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM u. K.
280-316 VICTORIA ROAD PARC INDUSTRIEL DE NANINNE 8ILSTON ROAD WEDNESBURY
RYDALMERE, N.S.W. 2116 5140 NANINNE WEST MIDLANDS WS10 7JN

8749339-482-SP PRINTED IN US.A,



